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CURFENT STATUS OF PLANE CRACK TOUGHNESS TESTING 

by W i l l i a m  F. Brown, Jr., and John E.  Srawley 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio 

INTRODUCTION 

This report  deals with the  design and t e s t ing  of crack-notched 

specimens for determination of  the resistance of materials t o  unstable 

opening-mode crack extension under plane s t r a i n  conditions. T e s t  methods 

concerned with subcr i t ica l  crack extension due t o  repeated loading or 

agressive environments are not discussed. It i s  assumed t h a t  t he  reader 

w i l l  be familiar with the terminology and concepts of l i nea r  e l a s t i c  

f racture  mechanics used i n  e m l i e r  reports of ASTM Cormittee E-24 on 

Fracture Testing of Metals ( r e f s .  1-5) .  Much of the background has been 

thoroughly reviewed recently i n  the  various contributions contained i n  

ASTM Special  Technical Publication No. 381 ( r e f .  6 ) .  

The plane s t r a i n  crack toughness KIc i s  a material  property which 

KI , i s  measured i n  terms of t he  opening-mode s t r e s s  in tens i ty  fac tor  

expressed i n  un i t s  of (stress)X(length) '1'. 
KIc and KI i s  important, and is comparable t o  the d i s t inc t ion  between 

s t rength  and s t r e s s .  To determine a KIc value a crack-notched specimen 

of su i t ab le  dimensions i s  increasingly loaded u n t i l  t he  crack becomes 

unstable and extends abruptly. The r a t i o  of KI t o  the applied load i s  

a funct ion of specimen design and dimensions which i s  evaluated by s t r e s s  

The d is t inc t ion  between 

analysis ,  as discussed l a t e r .  The KI value corresponding t o  the load 

at which unstable crack extension i s  observed i s  the  

i n  the  t e s t .  

KIc value determined 

T h i s  property i s  a f'unction of temperature and s t r a i n  r a t e .  

TMX-52209 
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The plane s t r a i n  crack toughness of a given sample of mater ia l  i s  

characterized by t h e  d i s t r ibu t ion  of KIc values determined on specimens 

taken from the  sample. 

considerable, and the  KIc 

r e a l i s t i c a l l y  represented by lower confidence limits ra ther  than mean 

values.  

The dispersion of t h i s  d i s t r ibu t ion  i s  of ten 

l e v e l s  of engineering mater ia ls  may be more 

Under ce r t a in  conditions the  K l e v e l  of a mater ia l  can be used 
I C  

t o  estimate the  load t h a t  a s t ruc tu ra l  member containing a crack of 

specif ied dimensions could sus ta in  without f rac ture .  

based on KIc 

mater ia l  at the  crack t i p ,  corresponding t o  a s t a t e  of plane s t r a i n .  

Under d i f fe ren t  conditions, such as those per ta ining t o  a through- 

thickness crack i n  a t h i n  p l a t e ,  t h e  a b i l l t y  of t h e  mater ia l  t o  r e s i s t  

unstable extension of t h e  crack can be subs tan t ia l ly  greater  than ind i -  

cated by the  K I ~  l eve l .  The e f f ec t ive  toughness then depends upon 

the  degree of re laxat ion of crack f ron t  constraint  due t o  t h e  proximity 

of t h e  p la te  surfaces.  

Strength estimates 

assume a high degree of constraint  t o  p l a s t i c  f l o w  of t he  

The ef fec t ive  toughness of a mater ia l  w i l l  not be l e s s  than  i t s  

l eve l  under any p rac t i ca l  conditions, and it i s  therefore  appro- 

as a bas ic  index of i n t r i n s i c  crack toughness. 

KIc 

p r i a t e  t o  regard KIc 

It has been established t h a t  t h e  KIc l e v e l s  of a number of s t r u c t u r a l  

materials a r e  e s sen t i a l ly  independent of specimen design and dimensions 

when the  specif icat ions f o r  va l id  KIc t e s t i n g  are met. 

It i s  necessary t o  develop spec i f ica t ions  for  va l id  KIc t e s t i n g  

because r e a l  materials do not deform i n  the  e l a s t i c - b r i t t l e  manner 
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assumed i n  l i nea r  e l a s t i c  f rac ture  mechanics. 

su f f i c i en t ly  large crack-notched specimen i s  tes ted ,  the  behavior i s  

suf f ic ien t ly  close t o  e l a s t i c  b r i t t l e  because t h e  crack t i p  p l a s t i c  

region remains small r e l a t i v e  t o  t h e  s ignif icant  specimen dimensions. 

Nevertheless, when a 

The conditions f o r  va l id  KIc 

specimen dimensions and a maximum limit on deviation from l i n e a r i t y  of 

the  load-displacement record. 

of t e s t  da ta  obtained for  the  purpose, as discussed i n  subsequent sections.  

It should be c lear ly  understood, however, tha t  a ce r t a in  degree of 

a rb i t ra r iness  i s  unavoidable i n  specifying these limits. 

of useful da ta  increases it should be possible t o  reduce the  degree of 

a rb i t r a r ines s  i n  se t t i ng  t h e  conditions fo r  va l id  KIc t e s t ing .  

t es t ing  comprise both min imum limits f o r  

These limits are established on the  b a s i s  

As the  amount 

FUKDAME3lTAlS OF SPEClMEN DESIGN AND TESTING 

The purpose of t h i s  sect ion i s  to  review ce r t a in  basic  fac tors  i n  

the  design and t e s t i n g  of KIc specimens. To understand the  important 

f ac to r s  i n  the  design of p rac t i ca l  t e s t  specimens it i s  usef'ul t o  

start out by considering a configuration t h a t  i s  as simple as possible.  

KIc 

The simplest configuration t o  consider i s  t h e  axially-symmetric 

c i r cu la r  crack located inside a body su f f i c i en t ly  large that the  e f f ec t s  

of i t s  bounding surfaces on the  s t ress  f i e l d  of the  crack are  negligible.  

I n i t i a l l y ,  before load i s  applied t o t h e  body, t he  crack i s  regarded as 

i d e a l l y  sharp and f r ee  from any self-equi l ibrat ing s t r e s s  f i e l d  (such 

as might ex i s t  i n  a prac t ica l  specimen frm the residual  e f f ec t s  of 

a r t i f i c i a l l y  generating the crack). 

s t e a d i l y  increasing t h e  gross t ens i l e  s t r e s s ,  a, which is  applied 

The "specimen" i s  tes ted  by 
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remote from and normal t o  t h e  crack plane. 

in tens i ty  at every point around the  crack border i s  given by: 

The opening mode s t r e s s  

K~ = 2a (a /x)  1 / 2  

where 2a i s  the  e f fec t ive  crack diameter. When u i s  small compared 

w i t h  t he  y ie ld  s t rength of the  material ,  0ys, t h e  e f fec t ive  crack 

diameter i s  not appreciably d i f f e ren t  from t h e  ac tua l  crack diameter 

2a0. 

formally equal t o  , where the  supplemental term i s  

I rwin ' s  estimate of t h e  plane s t r a i n  p l a s t i c  zone correct ion term fo r  

S t r i c t ly ,  however, t he  e f fec t ive  crack diameter i s  taken t o  be 

2 2 2a0 + KI/3no YS 

matching an equivalent e l a s t i c  crack t o  an e l a s t i c -p l a s t i c  crack ( re f .  7 )  

To conduct a sa t i s fac tory  KIc t e s t  it i s  necessary t o  provide f o r  

autographic recording of t h e  applied load versus the  output from a t r ans -  

ducer which accurately senses some quant i ty  which can be r e l a t ed  t o  

extension of t he  crack. The bas ic  measurement for  this purpose i s  t h e  

r e l a t i v e  displacement of two points  located symmetrically on opposite 

s ides  of t h e  crack plane. Assuming t h a t  such a measurement could be 

made on a buried-crack specimen, t he  displacement per un i t  load would 

be constant as long as t h e  e f f ec t ive  crack diameter remained constant,  

but would increase i f  2a increased. Hence, t h e  load-displacement 

p lo t  would be l i n e a r  as long as there  w a s  no appreciable change i n  

I n  the  ideal  case i n  which 

(KIc/%s)2 , t h e  load-displacement p lo t  would be l i n e a r  up t o  the  point  

at which the  specimen fractured abruptly,  as i n  Figure l a .  

of KIc 

crack diameter, using equation (1). 

2a .  

2a0 i s  l a r g e  compmed w i t h  t h e  quant i ty  

The value 

could then be calculated from t h e  max imum load and the  measured 
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It follows from equation (1) tha t  i f  

1.5(KIc/ays)2 , the  applied s t r e s s  would exceed 4cS before the  s t r e s s  

i n t ens i ty  reached KIc . The specimen would then undergo gross p l a s t i c  

deformation before f racture ,  and the  load-displacement p lo t  would be 

obviously nonlinear, as i n  Figure Ib .  

nevertheless occur rather abruptly without much crack extension pr ior  

t o  maximum load, but since the  crack s t r e s s  f i e l d  could no longer be 

matched by tha t  of an equivalent e l a s t i c  crack with an acceptable degree 

of accuracy, the 

maximum load should not be regarded as a va l id  

2ao were less than about 

It i s  l i k e l y  t h a t  f rac ture  would 

KI value which could be calculated formally from the  

KIc. 

The crack diameter i s  the charac te r i s t ic  dimension of the simple 

specimen under discussion. 

a ce r t a in  s ize ,  proportional t o  

measurement t o  be m a d e .  The quantity (KIc/%S)2 i s  a charac te r i s t ic  

property of the  material  having dimensions of length which is, i n  some 

respects,  a b e t t e r  measure of crack toughness than The usef'ul 

lower l i m i t  of t he  crack diameter cannot be deduced, at present, from 

theore t ica l  considerations alone; it must be established empirically 

from t h e  results of a large number of trial 

This charac te r i s t ic  dimension has t o  exceed 

I C  
(KI,/4rs)2 , i n  order f o r  a va l id  K 

KIc . 

KIc t e s t s .  

I n  a t e s t  i n  which 2% i s  greater than, but close t o ,  the useful 

lower l i m i t ,  the  load-displacement record might be somewhat nonlinear 

ne= t o  the point of m a x i m u m  load, as i n  Figure IC. I n  f ac t ,  records 

of t h i s  sor t  are often encomtered i n  va l id  t e s t s  of p rac t i ca l  speci- 

mens. The nonlinearity i s  pa r t ly  due t o  s l igh t ,  irregulaz extension of 

t he  crack during the  last stages of loading and pa r t ly  due t o  p l a s t i c  
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deformation around the  crack border (which can be regarded formally as 

a v i r t u a l  crack extension).  If t h e  extent of t h e  nonlinearity i s  not 

excessive, then it can be ignored and t h e  KIc value can be calculated 

from the m a x i m u m  load and t h e  measured crack diameter 2ao. 

t i o n  of how much nonlinearity i s  excessive needs t o  be specif ied 

precisely,  of course, and it i s  consistent with t h e  Irwin formalism t o  

require t ha t  t h e  allowable nonl inear i ty  should not exceed tha t  which 

would correspond t o  an increase of t he  i n i t i a l  crack diameter by the  

amount of t h e  formal plane s t r a i n  p l a s t i c  zone correction term, i n  round 

figures: 0.1(KIc/%S)2 . It i s  shown l a t e r  t h a t  t h i s  requirement leads 

t o  an eqxlvalent l imi t a t ion  on the  mouiit by which t h e  reciprocal  slope 

of t h e  secant OP i n  Figure IC m a y  exceed the  rec iproca l  of t he  i n i t i a l  

loading slope OQ i f  t he  tes t  i s  t o  be regarded as va l id .  

The ques- 

Measurements of KIc w i t h  c i r cu la r  crack specimens a re  s t r a igh t -  

forward i n  pr inciple .  

specimens, such as the  crack-notch round b a r  (conceptually t h e  inverse 

of t he  c i rcu lar  crack) or  the surface crack specimen. Such specimens, 

however, are comparatively ine f f i c i en t  i n  respect  of t h e  volume of 

mater ia l  and the  magnitude of t e s t  load required f o r  measurement of 

K I ~  

rectangular cross-section w i t h  through-thickness cracks, re fe r red  t o  

b r i e f l y  as p l a t e  specimens, have been developed, and are  more e f f i c i e n t  

but conceptually more complicated. I n  t h e  f irst  place,  t h e  dimensions 

of t he  specimens i n  r e l a t i o n  t o  the  crack dimensions a re  not l a rge  

enough t h a t  t he  e f f ec t s  of the  specimen boundaries on the  crack s t r e s s  

The same i s  t r u e  of r e l a t ed  types of p rac t i ca l  

of a given mater ia l .  A number of d i f f e ren t  types of specimens of 

.. 
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f i e l d  can be neglected. This circumstance leads t o  more cmplicated 

expressions f o r  

experimental s t r e s s  analysis,  as discussed i n  the  sect ion on "K 

Calibrations of Specimens". Secondly, t he  most e f f i c i en t  use of these 

p la te  specimens depends upon the  proper exploi ta t ion of the  phenomenon 

of popin of the crack f ront  which i s  observed when 

KIc 

ness, as w i l l  now be explained. 

KI which a re  arrived at by e i the r  mathematical or 

KI reaches the 

l e v e l  of the mater ia l  i n  p l a t e  specimens of nearly marginal thick-  

Popin KIc Measurements with F la t  P la te  Specimens 

The simplest type of p l a t e  specimen has a central ,  through- 

thickness crack of i n i t i a l  length 

c i rcu lar  crack specimen, by applying a uniformly d is t r ibu ted  t e n s i l e  

load remote from the  crack and normal t o  the crack plane. It can be 

regarded as a cent ra l ,  longitudinal s l i c e  of thickness B from a 

c i rcu lar  crack specimen, except that t h e  crack f ronts  a re  assumed t o  

be s t ra ight .  If the  width W i s  large compared t o  2a0 , then the 

opening mode stress in tens i ty  at every point along the  crack f ron t s  is:  

2a0 , and i s  t e s t ed  l i k e  the 

K I  

where (5 i s  the  gross applied 

length.  

If Ea, and B are both 

( 2 )  = a(na) 1 / 2  

s t ress  and 2a i s  the  e f fec t ive  crack 

large compared wi 'ch  ( K I ~ / G Y S ) ~  , then 

the  t e s t  record, Figure 2a, will be similar t o  t h a t  f o r  a large c i rcu lar  

crack specimen. If progressively thinner specimens are tes ted ,  however, 

a thickness range w i l l  be reached within which a specimen does not 
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f rac ture  completely at the  lo& corresponding t o  KIc ; instead, t h e  

abrupt advance of t he  crack f ront  proceeds at t h e  center but i s  suppres- 

sed at the f r e e  faces of t h e  specimen. A tongue of f r ac tu re  extends 

from t h e  crack f ront ,  as shown schematically above Figure 2b, and i s  

then temporarily hal ted u n t i l  t he  load i s  increased further. The test  

record, Figure 2b, shows a popin s tep  where the  displacement increases 

without any commensurate increase i n  load. T h i s  popin phenomenon w a s  

f irst  exploited by Boyle e t  al ( r e f .  8 ) ,  however, it should be  noted 

t h a t  Boyle's specimens had sharp, machined notches t h a t  were not crack- 

tipped; consequently, the  popins were more pronounced than they would 

have been If crack-notch specimens had been used, and the  KIc vaiues 

reported were somewhat higher. 

The extent of t h e  popin diminishes with decrease of specimen thick-  

ness, and t h e  popin s t ep  i n  t h e  t e s t  record becomes correspondingly 

l e s s  pronounced u n t i l  it becomes impossible t o  de tec t  t he  popin load 

w i t h  any degree of confidence, as i n  Figure 2c. 

i n  a plate  specimen i s  connected w i t h  t he  nature  of t he  crack t i p  p l a s t i c  

zone i n  such a specimen, and it i s  useful t o  keep i n  mind ce r t a in  aspects 

of t h i s  p l a s t i c  zone. 

shape of a crack t i p  p l a s t i c  zone i n  a p l a t e  specimen, based on Mises 

y ie ld  limit l i n e s  fo r  plane s t r e s s  and plane s t r a i n  as given by McClintoch 

and Irwin ( r e f .  9 ) .  

more complicated e l a s t i c -p l a s t i c  ana lys i s  would d i f f e r  somewhat from t h i s ,  

and would depend on the  strain-hardening c h a r a c t e r i s t i c s  of t h e  mater ia l .  

The differences, however, a re  not important f o r  t h e  present discussion. 

The popin phenomenon 

Figure 3 shows a formal representat ion of t he  

The p l a s t i c  zone shape which would be  obtained by a 
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I n  a su f f i c i en t ly  th ick  specimen, plane s t r a i n  conditions preva i l  i n  the 

middle par t  of the thickness, while plane s t r e s s  conditions 

near t h e  faces.  The p l a s t i c  zone extends much fur ther  ahead of the crack 

near the  faces than it does near midthickness, and the f r e e  surface 

influence extends i n t o  the thickness of the  specimen fo r  a distance 

which i s  proportional t o  

the  thickness i s  l e s s  than some c r i t i c a l  value that i s  proportional t o  

(KIc/%s)2 , t he  constraint-relieving influence of the  f r ee  faces w i l l  

extend en t i r e ly  through the  thickness before the s t r e s s  in tens i ty  reaches 

KIC . 
extension because of the increased poss ib i l i t i e s  of p l a s t i c  deformation, 

and the  e f f ec t  of aay opening mode crack extension which does occur i s  

masked by the  e f fec t  of the  conccanmitant p l a s t i c  deformation. 

i s  a gradual, rather than abrupt, change i n  slope of the  load-displace- 

ment record, as i n  Figure 2c. 

prevai l  

(KI/%S)2 . It i s  clear ,  therefore,  t h a t  when 

T h i s  r e l i e f  of constraint  tends t o  suppress opening mode crack 

The r e s u l t  

The lower l i m i t  of thickness for  r e l i ab le  popin KIc measurement 

cannot be predicked at present from theore t ica l  considerations alone; it 

must be established frm a suff ic ient  number of trial 

Results that have been obtained fo r  t h i s  purpose a re  discussed i n  the 

l a t e r  sect ion on "Specimen Size Requirements". 

not considered t o  be suf f ic ien t  f o r  f i n a l  determination of t h e  thickness 

l i m i t ,  they lead t o  the  ten ta t ive  conclusion tha t  t he  thickness should 

not be l e s s  than about 

which l ead  t o  a similar conclusion regarding the  crack length. 

KIc t e s t s .  

While these results are 

2.5(KIc/%s)2 . Results a r e  a l s o  presented 
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The wide center-cracked p l a t e  specimen thus has two independent 

. .  
c 

charac te r i s t ic  dimensions, crack length and thickness, which must exceed 

ce r t a in  sizes,  proportional t o  t h e  charac te r i s t ic  mater ia l  property 

(%c/Uys)2 , i n  order t h a t  a va l id  KIc measurement can be made. A 

fur ther  improvement i n  specimen eff ic iency can be made by decreasing 

t h e  specimen width W so t h a t  2a0/W i s  not a s m a l l  f r ac t ion .  When 

t h i s  i s  done equation ( 2 )  no longer appl ies  accurately; however, an 

appropriate s t r e s s  analysis  has been conducted, as discussed under "K 

Calibrations of Specimens". If 2a0/W exceeds a ce r t a in  value a 

t h i r d  independent charac te r i s t ic  dimension has t o  be considered, 

nmely  the ancracked length,  or ligament iength,  

i f  t he  crack t i p  i s  too  close t o  t h e  f r e e  edge of t h e  specimen, then 

~ / 2  - a, . Cieariy, 

the p l a s t i c  zone s i ze  w i l l  be comparable t o  the ligament length and it 

w i l l  no longer be possible t o  match the  stress f i e l d  w i t h  t ha t  of an 

equivalent e l a s t i c  crack. Once again, the  lower l i m i t  f o r  W/2 - a. 

should be related t o  t he  cha rac t e r i s t i c  material dimension (KIc/UyS)2 , 
and the numerical proportion must be determined from trial 

A t  t h e  present t i m e  there  i s  in su f f i c i en t  data fo r  anything more than 

an informed guess at t h i s  proportion. 

KIc tes ts .  

These three  independent cha rac t e r i s t i c  dimensions have t o  be con- 

sidered i n  designing any of t h e  various types of p l a t e  specimens t h a t  

a re  discussed i n  t h i s  repor t .  The d i f f e ren t  types of p l a t e  specimens 

are shown schematically i n  Figure 4, i n  approximate proportion fo r  

equal KIc measurement capaci t ies ,  assuming that the  thickness  i s  

adequate. These specimens are considered i n  d e t a i l  i n  t h e  sections 

which follow. 
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K CALJBRATIONS OF SPECIMENS 

The crack t i p  stress in t ens i ty  factor KI i n  a t e s t  specimen i s  

equal t o  the  applied load mult ipl iedby some function of t h e  specimen 

dimensions, including the  crack length, which depends on the  specimen 

design. An established r e l a t ion  connecting KI with the  specimen d i -  

mensions and applied load for a part icular  design of specimen i s  cal led 

a K cal ibrat ion fo r  conciseness. Various methods of mathematical or 

experimental s t r e s s  analysis  a r e  used t o  obtain K cal ibrat ions,  and all 

the  methods invblve ce r t a in  simplifying assumptions about the  specimen 

configuration or  t he  d is t r ibu t ion  of applied load or both. In  making 

use of the  resu l t ing  K cal ibrat ions it i s  advisable t o  be aware of these 

assumptions i n  order t o  avoid e r rors  i n  KIc measurement that might 

r e s u l t  from incompatability of the  K ca l ibra t ion  with t h e  design of the 

r 

specimen and loading arrangements. This section i s  concerned w i t h  some 

pertinent aspects of various methods f o r  K ca l ibra t ion  and, i n  addition, 

includes the  r e s u l t s  of same extended or improved K cal ibrat ions t h a t  

have become available s ince t h e  prepaxation of reference 10. 

Adjustment of Two-Dimensional K Calibrations 

Apart frm t h e  crack-notch round bar,  all the  specimens considered 

i n  this section are  p l a t e  specimens w i t h  through-thickness cracks. The 

cracks m e  assumed t o  have s t ra ight  leading edges normal t o  the  p l a t e  

faces ,  Because of the d i f f i c u l t y  of complete three-dimensional stress 

analysis ,  the  K ca l ibra t ion  procedures t h a t  m e  used, whether mathe- 

mat ical  or experimental, t r e a t  these p l a t e  specimens as essent ia l ly  

two-dimensional. Some investigators ad j u s t  the  two-dimensional K 



cal ibrat ions by multiplying by the  

Poisson's r a t i o .  The magnitude of 

1 2  

fac tor  (1 - V2)-1/2 , where v i s  

t h i s  adjustment fac tor  i s  1.05 when 

v i s  0.3. 

which a two-dimensional K ca l ibra t ion  would apply t o  a r e a l  plane S t ra in  

crack toughness specimen, and was used by the  present authors i n  an 

e a r l i e r  review paper ( r e f .  10). 

t h e  adjustment fac tor  should be as la rge  as (1 - v 2 ) - l I 2  , although 

there  i s  general agreement t h a t  it should not be l e s s  than uni ty .  In  

view of t h i s  uncertainty,  t h e  present authors now prefer t he  simpler 

a l te rna t ive  of using the  two-dimensional K ca l ibra t ions  d i r ec t ly ,  without 

adjustment. Any e r ro r  r e su l t i ng  from t h i s  prac t ice  w i l l  be small 

(probably l e s s  than 5 percent) and conservative i n  t h a t  

underestimated ra ther  than overestimated. 

The adjustment i s  intended t o  improve the  accuracy w i t h  

It i s  by no means clear ,  however, t ha t  

K I ~  w i l l  be  

Methods for  K Cal ibrat ion 

The most commonly used experimental method of K ca l ib ra t ion  i s  t h a t  

due t o  Irwin and Kies ( r e f .  11) i n  which measurements a re  made of t h e  

compliance (reciprocal  of the s t i f fnes s )  of a specimen having a narrow 

machined s l o t  which i s  incrementally extended between successive measure- 

ments. The machined s l o t  i s  used t o  simulate a crack primarily because 

it i s  not f eas ib l e  t o  produce plane cracks of su f f i c i en t  s i z e  and 

accuracy. 

given length w i l l  not be exactly the  same as that of a f ini te-width s l o t  

of t h e  same length. 

t he  specimen compliance as a function of crack length,  and then obtaining 

t h e  derivative of t h i s  function with respect  t o  crack length.  

It i s  apparent, however, t h a t  t he  compliance of a crack of 

The experimental d a t a  a re  t r e a t e d  by expressing 

While it 

. -  
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i s  obvious that the  compliance of a specimen with a s l o t  w i l l  be somewhat 

greater  than t h a t  of a specimen with as equally long crack, it does not 

follow that the  der ivat ive of the compliance with respect t o  the  length 

w i l l  always be greater  f o r  t h e  s l o t  than f o r  a crack. 

known how t o  correct f o r  the s l o t  wid th ,  it i s  advisable t o  take t h e  

equivalent crack length as equal t o  the s l o t  length but  uncertain t o  the  

extent of t h e  s l o t  width. 

men i s  made la rge  and the s l o t  narrow. 

as la rge  a specimen as possible f o r  compliance measurements because the  

displacements w i l l  be proportionately l a rge  and can be measured with 

correspondingly good accuracy. 

Since it is  not 

T h i s  uncertainty w i l l  be minimal i Y  the  speci- 

It i s  always an advantage t o  use 

To conduct a compliance cal ibrat ion with good accuracy it i s  neces- 

s a r y  t o  use sensit ive,  accurate gages, and t o  pay careful  a t ten t ion  t o  

d e t a i l  ( r e f s .  1 2  and 13). 

compliant specimens, such as bend bars, than with stiff specimens such 

as notched rounds. It should a l so  be appreciated t h a t  the  accuracy of 

t he  K ca l ibra t ion  i s  l i k e l y  t o  be less  than that of t he  ccanpliance 

measurements because of the  d i f fe ren t ia t ion  operation required f o r  

reducing t h e  experimental data.  

e n t i a t i o n  should be l e s s  the l a r g e r  the n p e r  of compliance measurements 

involved f o r  a given range of crack lengths. 

More accurate r e su l t s  can be obtained w i t h  

The error-magnifying e f f ec t  of d i f f e r -  

The main advantage of the compliance ca l ibra t ion  method i s  t h a t  the  

ac tua l  configuration and load d is t r ibu t ion  of a 

be c lose ly  modelled by the  K c d i b r a t i o n  specimen. 

crack s t r e s s  analysis the  specimen has t o  be idealized i n t o  a suf f ic ien t ly  

KIc t e s t  specimen can 

In  a mathematical 
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simple model. For instance,  the  complicated s t r e s s  d i s t r ibu t ion  around 

a loading p in  has t o  be replaced by a simpler equivalent s t r e s s  d i s t r i -  

but ion assumed, on the bas i s  of S t  Venant's pr inciple ,  t o  have t h e  same 

effect  on t he  crack s t r e s s  f i e l d  ( r e f s .  14 ,  15, 1 6 ) .  

a t tent ion t o  t h e  design of both specimen and mathematical model, and 

apart  from t h e  f a c t  t h a t  t he  model i s  usual ly  two-dimensional, the 

inaccuracy due t o  t he  idea l iza t ion  can be made as s m a l l  as desired.  

achieve high accuracy, however, may e n t a i l  some sacr i f ice  i n  compactness 

of t h e  specimen design. For example, the  length of a pin-loaded tension 

specimen might have t o  be grea te r  than would otherwise be thought 

necessary. 

With carefu l  

T O  

The mathematical methods of crack s t r e s s  analysis  are capable of 

very high precis ion when used i n  conjunction with la rge  d i g i t a l  computers. 

A l l  t he  K ca l ibra t ions  which follow were obtained by such methods, and 

are  considered t o  be accurate, i n  themselves, t o  within at least 1 

percent (with t h e  possible exception of t he  crack-notched round ba r )  

The accuracy with which any of the  K ca l ibra t ions  appl ies  t o  a spec i f ic ,  

de t a i l ed  specimen design depends, however, on t h e  compatability of the  

design with t h e  mathematical model on which t h e  K ca l ib ra t ion  i s  based. 

Center-Cracked P la t e  Under Uniform Tension 

The commonly used Irwin-Westergaard tangent r e l a t i o n  f o r  t he  f i n i t e -  

width center-cracked p l a t e  does not properly s a t i s f y  t h e  boundary condi- 

t i ons  for t h e  specimen, as discussed i n  reference 1 7 .  Mathematical 

s t r e s s  analyses of t h i s  case have been conducted recent ly  by Forman and 

Kobayashi ( ref .  la), by M. Isida (unpublished),  and by Alexander Mendelson 
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(a lso unpublished). The results of these s tudies  are  i n  excellent agree- 

ment wi th  one another, and can be expressed by a s ingle  curve as i n  

Figure 5 -- the  individual r e su l t s  would not be distinguishable from the  

curve on the scale  of this figure.  

The results of I s ida  were used by the  authors i n  a least-squares- 

b e s t - f i t  procedure t o  obtain t h e  following compact expression which f i t s  

the r e s u l t s  t o  within 0.5 percent over t he  range of 2a/W from 0 t o  0.7: 

Y = KBW/Pa1l2 = 1.77 + 0.227(2a/W) - 0.510(2a/W)2 + 2.7(2a/W)3 
I 

Over the range of 2a/W between 0 and 0.6 the  following very simple 

expression is  accurate t o  w i t h i n  1 percent: 

Y = 1.77(1 - 0.1(2a/W) + (2a/W)2) 

Polyncanial expressions of K cal ibrat ions a re  pa r t i cu lmly  convenient for 

incorporation i n t o  data-reduction cmputer programs. 

Figure 5 shows tht the  tangent expression gives KI values t h a t  

a r e  lower than those given by the recent K cal ibrat ion,  and that the  

difference increases with 2a/W . It i s  generally agreed t h a t  t h e  new 

ca l ibra t ion  is  more accurate, and it is  recommended tha t  it should be 

used i n  place of the tangent expression. 

Doale-Edge -Cracked Pla te  

The recommendations made i n  reference 1 7  (Table 3) have not been 

superseded by any recent work. The accuracy i s  probably within one 

percent.  

Single-Edge Cracked P la t e  Specimens 

There a re  several  forms of single-edge cracked p l a t e  specimens fo r  

testing, and these can be c lass i f ied  according t o  the  manner i n  KIc 
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which they are  loaded, for  instance: pin-loading i n  tension (campact 

specimens t h a t  are extremely eccentrically-loaded i n  tension are  ca l led  

crackline loaded specimens i n  t h i s  repor t ) ;  four-point bending and 

three-point bending. Boundary col locat ion studies of a l l  these var ia-  

t i ons  have been reported ( r e f s .  14, 15, 16, 19), and t h e  K ca l ibra t ions  

w i l l  be discussed i n  turn .  

Single-Edge Cracked Pla tes  i n  Tension 

I n  an e a r l i e r  report  by t h e  authors ( r e f .  10) t he  K ca l ib ra t ion  

given was derived from experimental compliance measurements on speci-  

mens tha t  were pin-loaded through t h e  center l ine  ( r e f .  13). 

considered tha t  the boundary col locat ion K ca l ibra t ion  by Bernard 

Gross ( r e f .  14, since extended t o  cover a l a rge r  range of t h e  r e l a t i v e  

crack length a/W) i s  more accurate.  I n  t h i s  mathematical treatment it 

i s  assumed tha t  t h e  t e n s i l e  load i s  uniformly d i s t r ibu ted  across t h e  

width of the specimen at a dis tance not l e s s  than t h e  width. This 

assumption i s  consistent with pin-loading of t he  ac tua l  specimen i f  t he  

dis tance between loading p in  centers  i s  not l e s s  than th ree  times t h e  

specimen width. 

It i s  now 

The K ca l ibra t ion  fo r  uniform tension i s  represented by the  following 

equation t o  within 0.4 percent f o r  a l l  values  of a / W  up t o  0.6: 

Y = KIBW/Pa1/2 = 1.99  - 41.24(a/W) + 18.7O(a/W)' 

- 38.48(a/W)3 + 53.S5(a/W)4 

A curve representing t h i s  r e l a t i o n  i s  shown i n  Figure 6.  

experimental r e s u l t s  of reference 13 are  i n  agreement with Figure 6 

The earlier 

. '  
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a/W between 0.2 and 0.4, but deviate within 1 percent i n  the range of 

increasingly as a/W i s  increased beyond 0.4. 

Calibrations fo r  single-edge cracked specimens t h a t  are eccentr ical ly  

loaded i n  tension can be derived by superposition from the  r e s u l t s  f o r  

ax ia l  tension and pure bending, as discussed i n  reference 15; however, 

such specimens appear t o  have considerably less p rac t i ca l  i n t e r e s t  than 

the  more compact crackline specimens discussed l a t e r .  

Single-Edge Cracked Bend Specimens 

Boundary collocation K cal ibrat ions f o r  single-edge cracked p l a t e  

specimens i n  pure bending and i n  three-point bending are  reported i n  

references 15 and 16 respectively, and have since been extended t o  cover 

a la rger  range of a/W. Figure 7 shows curves representing the  results 

f o r  pure bending and for three-point bending with r a t i o s  of support span 

t o  specimen depth, S/W, of 4 and 8. 

The K cal ibrat ions a re  represented by fourth degree polynomials of 

t he  following form t o  within 0.2 percent fo r  a l l  values of 

0.6: 

a / W  up t o  

Y = K1BW2/6Ma1/' = + Al(a/W) + AZ(a/W)' + A3(a/W)3 + A4(a/W)4 

where M i s  the  applied bending moment, and the  coeff ic ients  A2 

have t h e  following values: 

A0 A 1  A2 A3  A4 

Pure bending +1.99 -2.47 +12.97 -23 -17 +24.80 

Three point 

S/W = 8 +l. 96 -2.75 +13.66 -23.90 +25.22 

s/w = 4 +l. 93 -3 a07 +14,53 -25 -11 +25.80 
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It i s  considered t h a t  the K ca l ibra t ion  f o r  pure bending can be 

applied t o  four-point bending i f  t h e  r a t i o  of the  minor span t o  specimen 

depth i s  not l e s s  than 2. If the  r a t i o  of t h e  major, support span t o  

specimen depth S/W 

four-point bending, then it i s  d i f f i c u l t  t o  avoid subs tan t ia l  e r ro r s  

from specimen indentation and f r i c t i o n  at the  supports. Even w i t h  

l a rge r  r a t i o s  of 

minimize such er rors ,  as discussed i n  a l a t e r  section. 

i s  less than about 4, i n  e i t h e r  three-point or  

S/W than 4 it i s  necessary t o  take precautions t o  

Crackline Loaded Single-Edge Cracked Specimens 

It appears t h a t  t h i s  type of specimen, defined e a r l i e r ,  can be made 

KIc t e s t ing ,  and it more compact than any other t h a t  could be used f o r  

i s  therefore  of pa r t i cu la r  i n t e r e s t  where economy of mater ia l  or space 

for exposure of m a t e r i d  (as i n  a nuclear reac tor )  i s  of prime importance. 

There are  many possible design var ia t ions ,  and it i s  not ye t  c l ea r  what 

t he  optimum design should be.  An ea r ly  design, due t o  M. J.  Manjoine 

( r e f .  20) has been the  subject  of considerable study and development, 

including boundary col locat ion K ca l ib ra t ion  (refs.  21,  22, 2 3 ) .  

somewhat d i f fe ren t  l i n e  of development has been pursued by E .  Ripling 

( r e f .  24) and Ripl ing 's  K ca l ib ra t ion  has been independently confirmed 

by boundary collocation ana lys i s  ( r e f .  1 9 )  . 

A 

For i l l u s t r a t i v e  purposes a s e t  of K ca l ib ra t ion  curves f o r  compact 

crackline loaded specimens are  shown i n  Figure 8. These are derived 

from unpublished work by Bernard Gross and show t h e  e f f e c t  of varying 

the  r e l a t ive  specimen half-height H/W, as w e l l  as t h e  r e l a t i v e  crack 

length a/W. For H/W = 0.444 and a / W  = 0.38 , t h e  specimen shown i n  
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Figure 8 corresponds essent ia l ly  t o  the or ig ina l  Manjoine design. 

bas i s  of considerations regarding crack length and thickness given e l se-  

where i n  this report ,  and assuming a simple, two p in  method of loading 

t h e  specimen, the present authors have t en ta t ive ly  concluded that a 

specimen with a/W and H/W each equal t o  about 0.6 would be close t o  

optimum. Tests are scheduled t o  evaluate such a specimen design i n  t he  

near future. 

On the  

A fur ther  development due t o  Mostovoy ( r e f .  25) concerns the  use of 

tapered crackline loaded specimens, i n  which the height var ies  with 

distance frm the  loading l i ne .  By appropriate tapering, t he  K cal ibra-  

t i o n  r e l a t ion  can be made almost independent of a/W Over a subs tan t ia l  

range. T h i s  i s  experimentally convenient fo r  fa t igue crack propagation 

s tudies ,  and might a l so  have some advantage i n  KIc t es t ing .  There is  

c l ea r ly  a great deal  of fur ther  development t o  be expected i n  the  appl i -  

cat ion of crackline loaded specimens, and for  t h i s  reason it would not 

be advisable t o  attempt t o  be more specif ic  about t h e i r  use at the  

present time. 

, , 

Circumferentially Cracked Round B a r  

A s t r e s s  analysis f o r  this type of specimen w a s  conducted recent ly  

by H. F. Bueckner (ref. 26) ,  who considers the  accuracy of the  resu l t ing  

K ca l ibra t ion  t o  be within 1 percent ( i n  the  range of diameter r a t i o  

d/D between 0.5 and 0.9). 

and d i f f e r  considerably frm Bueckner's, as shown i n  Table 8 of re fer -  

ence 26. 

a t e  avai lable ,  and it i s  recommended that they should be used. 

E a r l i e r  K cal ibrat ions are  not so accurate, 

It i s  generally agreed that  Bueckner's r e su l t s  a re  the  most accur- 
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Figure 9 shows Bueckner's results i n  t h e  form of values of 

Y = (K1D3l2) /P  p lo t ted  against  D/d. T h i s  form was chosen because the  

r e l a t i o n  between t h e  two var iables  i s  represented within 1 percent by 

the l inear  equation: 

between 0.5 and 0.8. 

used t o  extrapolate Bueckner's r e s u l t s  for  values of 

low as 0.4. 

reference 1 7 ,  and with t h e  associated discussion given i n  t h a t  r e fe r -  

ence. For t he  purpose of comparison, Figure 9 a l so  shows t h e  r e s u l t s  

ascribed t o  Irwin i n  reference 26, which a re  those t h a t  a r e  most commonly 

used . 

Y = 1.72(D/d) - 1 . 2 7  , over the range of 

If necessary, t he  l i nea r  f i t t i n g  equation can be 

d/D 

d/D at  l e a s t  as 

Such extrapolated values a re  consistent w i t h  Table 5 of 

SPECIMEN SIZE RFQUIREMEXFS 

Before proceeding w i t h  a discussion of specimen s i ze  requirements, 

it i s  appropriate t o  remind t h e  reader of t h e  assumptions inherent i n  

t h e  application of e l a s t i c  f rac ture  mechanics t o  engineering a l loys  and 

p rac t i ca l  specimen types.  

The accuracy with which KIc describes t h e  f r a c t u r e  behavior of 

r e a l  materials depends on how well  t h e  s t r e s s  i n t ens i ty  f ac to r  repre- 

sents  t h e  conditions of s t r e s s  and s t r a i n  ins ide  the  f r ac tu re  process 

zone. I n  t h i s  sense KI gives an exact representat ion only i n  t h e  

l i m i t  of zero p l a s t i c  s t r a i n .  However, f o r  many p r a c t i c a l  purposes a 

suff ic ient  degree of accuracy m a y  be obtained i f  t he  crack front  p l a s t i c  

zone i s  small i n  comparison with the  v i c i n i t y  around t h e  crack i n  which 

the s t r e s s  i n t ens i ty  fac tor  y i e lds  a sa t i s f ac to ry  approximation of t h e  
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exact e l a s t i c  s t r e s s  f ie ld .*  

creasing the r e l a t ive  s ize  of the  p l a s t i c  zone i s  gradual, and it i s  not 

possible at the  present time t o  prescribe limits on the  appl icabi l i ty  of 

e l a s t i c  f racture  mechanics by means of t heo re t i ca l  considerations. 

Obviously, the  question of what const i tutes  a sa t i s fac tory  degree of 

accuracy w i l l  depend on the application, and i n  any case the  usef'ul 

limits of KIc 

be established by su i tab le  experiments. 

The loss i n  accuracy associated with in-  

t e s t i n g  i n  terms of specimen s ize  requirements can only 

I n  designing such experiments, it may be reasoned as follows: the  

region around the crack t i p  i n  which the  e l a s t i c  s t resses  are  adequately 

described by a K analysis w i l l  increase with crack s i z e  and other per- 

t i nen t  specimen dimensions. Thus, the usefulness of K as a descriptive 

parameter regarding the  f rac ture  process should increase as the  region 

of p l a s t i c  s t r a i n  at the  crack front decreases i n  s ize  cmpared with 

these dimensions. 

s t r e s ses  w i l l  be adequately described by K w i l l  v q  with t h e  specimen 

geometry. For t h i s  reason, and because the crack f ront  p l a s t i c  zone i s  

complex i n  shape, it i s  unlikely that  any single parameter can be used 

t o  accurately es tab l i sh  the  minimum specimen s ize  required for a 

determination of a par t icu lar  alloy. 

sect ion of t h i s  report ,  it is  appropriate t o  assume tha t  ( K I ~ / ~ s )  i s  

a charac te r i s t ic  dimension of the p las t ic  zone tha t  should be  useful i n  

The region around t h e  crack t i p  i n  which the  e l a s t i c  

KIc 

However, as discussed i n  a previous 
2 

* 
A de ta i led  discussion of this point by H. W. Liu ( r e f .  27) i s  recan- 

mended fo r  addi t ional  reading. 
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estimating specimen dimensions. The per t inent  dimensions of p la te  speci-  

mens for  KIc t e s t i n g  are crack length, thickness, and ligament 

(uncracked) length. 

t e s t  t o  be v a l i d  i s  t h a t  each of these dimensions should exceed a ce r t a in  

multiple of (KIc/%S) , these multiples t o  be determined by an adequate 

number of t r i a l  K I ~  t e s t s .  By means of such t e s t s ,  it should be 

possible t o  es tab l i sh  p rac t i ca l ly  useful  "working limits" f o r  specimen 

It i s  assumed t h a t  a necessary condition f o r  a KIc 

2 

dimensions. The lower l i m i t s  of these dimensions f o r  which KIc remains 

constant can then be expressed i n  terms of ( K  / a  ) . 2 
I C  YS 

Since t h e  above approach i s  d i f f e ren t  from t h a t  used previously i n  

determining speziiien s h e  requirements, it i s  advisable t o  b r i e f l y  review 

t h e  past  recommendations as summarized i n  the 5 t h  Fracture  Committee 

Report ( r e f .  5 )  and i n  a paper by t h e  present authors ( r e f .  10). Require- 

ments on the  specimen thickness B were formulated by Boyle, Sul l ivan 

and Krafft ( r e f .  8)  i n  terms of the  plane s t r e s s  p l a s t i c  zone correct ion 
2 

term: r y =  re) , and it was  suggested t h a t  B/ry should be a t  

l e a s t  four i n  order t h a t  a d i s t i n c t  popin could be observed. This 

requirement was based on information derived from t e s t s  on sharply- 

notched 7075-T6 aluminum a l loy  specimens, before the  subs tan t ia l  e f fec t  

of crack sharpness on the  measured plane s t r a i n  f r ac tu re  toughness had 

been appreciated (see SPECIMEN PREPARATION AND T E S T ~ G ) .  While the  work 

of Boyle e t  a1 is  helpful as a guide i n  fo rmda t ing  fur ther  experiments, 

the  use of data  from notched specimens without cracks t o  e s t ab l i sh  

specimen size requirements i s  misleading. 



23 

Hitherto, requirements on t h e  crack length and ligament s ize  have 

not been s ta ted d i rec t ly .  Instead, it has been assumed t h a t  a specimen 

w o u l d  be of suf f ic ien t  s ize  i f  t h e  r a t i o  of net or nominal stress t o  the 

yield strength did not exceed same part icular  value. For symmetrically 

loaded p l a t e  t e n s i l e  specimens it may be inferred from t h e  5 th  Fracture 

Committee Report tha t  the  net stress should be l e s s  than 80 percent of 

t he  y ie ld  strength* f o r  a va l id  KIc test  ( r e f .  5) .  

s ingle  edge cracked tension and bend specimens, the  present authors 

assumed previously tha t  t h e  nominal s t r e s s  at t h e  crack t i p  should be 

l e s s  than the  y i e ld  strength ( r e f .  10) .  These l imit ing stress r a t i o s  

were then used i n  conjunction with the appropriate cal ibrat ions t o  

calculate  an optimum value of crack length t o  specimen width, and a l so  

t o  derive KIc measurement capacit ies f o r  various specimen types 

(ref. 10). 

r a t i o s  t ha t  were d i f fe ren t  for  d i f fe ren t  specimen types and which now 

appear t o  be too  law.  

I n  the case of 

K 

This procedure resu l ted  i n  optimum crack length t o  width 

It appears tha t  basing specimen design requirements on a par t icu lar  

value of the net or nominal s t r e s s  t o  y ie ld  strength r a t i o  i s  open t o  

t he  following objections. F i r s t ,  the so-called nominal stress i s  an 

a r b i t r a r y  quantity and i s  defined d i f fe ren t ly  f o r  d i f fe ren t  types of 

specimens. Also, the use of the  nominal s t r e s s  c r i t e r ion  leads t o  a 

* I n  this connection it should be noted that the  l imiation of the  net 
stress i n  terms of the  yield strength given i n  this report  w a s  derived 
from t e s t s  on th in ,  center-slotted panels of tough al loys (K, t e s t s ) .  
The crack lengths at f rac ture  in s t ab i l i t y ,  and therefore the 
values,  were very d i f f i c u l t  t o  determine accurately (ref. 28). 

K, 
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r a t i o  of required crack length t o  p l a s t i c  zone s i ze  which decreases w i t h  

decreasing r a t i o  of crack length t o  specimen width. 

with t h e  rat ionale  of l i n e a r  e l a s t i c  f rac ture  mechanics. 

This i s  inconsistent 

What follows w i l l  i l l u s t r a t e  how the  problem of specimen design may 

be  approached through sui table  experiments designed t o  e s t a b l i s h  the  

required l i m i t s  on the  r a t i o s  between t h e  three  pertinent p l a t e  specimen 

dimensions and (KIc/%S)2 . A necessary requirement of t h i s  approach 

i s  t h a t  the "true" mean 

l ished by t e s t i n g  specimens of suf f ic ien t  crack length, thickness, and 

ligament s ize .  Once the t r u e  mean KIc i s  established i n  th i s  way, a 

systematic s e r i e s  of trial KIc 

given dimension may be reduced without s ignif icant  change i n  t h e  

values obtained. Tests of t h i s  type a re  time consuming and expensive, 

but no other sa t i s fac tory  procedure i s  evident a t  t h i s  time. 

ments t o  be described are  confined t o  t e s t s  on three  heats of maraging 

s t e e l  (see Table I )  used f o r  the NASA-PJRL Cooperative Program. 

l imited information s o  far avai lable  from t h i s  program i s  indicat ive but, 

not conclusive regarding specimen s ize  requirements. 

KI- of t h e  material  must be accurately estab- 

t e s t s  i s  made t o  determine how far a. 

KIc 

The experi- 

'The 

Crack Length Requirement 

The effect  of crack length on t h e  apparent KIc i s  shown i n  

Figure 10  f o r  single edge crack bend and tension specimens of 0.45 inch 

thick,  242 k s i  y ie ld  strength maraging s t e e l ,  cracked i n  the WR d i rec-  

t i o n .  The bend specimens were e i the r  one or two inches wide and t h e  * 

* 
For nomenclature concerning t h e  d i rec t ion  of crack propagation see 

reference 2,  page 391. 
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single edge crack tension specimens were 1.5, 3 or  4.5 inches wide. 

specimens exhibited load displacement curves w i t h  negl igible  nonlinearity 

and fractured completely at popin. 

it is  apparent that there  i s  no trend of KIc with crack length. The 

grand average of all 0.45 inch thick specimens i s  86.2 k s i  - in1l2. It 

can be shown" t h a t  t he  average KIc 

of bend specimens having crack lengths of about 0.17 inch i s  s ign i f i -  

cant ly  higher than the  grand average. The tension specimens with the  

All 

Except f o r  the  shortest  crack lengths, 

(90.8 k s i  - f o r  t he  group 

shortest  crack lengths also had an average KIc (98.2 ks i  - i n  1 /2)  

s ign i f icant ly  higher than the grand average. The aversge K I ~  for  a l l  

other crack lengths w a s  84.5 k s i  - 
t h e  t r u e  value. 

i s  less than 2 fo r  crack lengths of 0.17 inch and about 2.5 f o r  crack 

lengths  of 0.32 inch. 

and this i s  considered t o  be 

As can be seen f rm Figure 10, t h e  value of ad(KIc/%s)2 

Additional information concerning the  influence of crack length may 

be obtained from a ser ies  of bend t e s t s  made on 259 y ie ld  strength 

m a r a g i n g  s t e e l  ( f i g .  11). 

a wide range of crack lengths were cut from a single  one-inch thick 

p l a t e  of t h i s  s t ee l .  

d i s t i n c t  popin indications f o r  a l l  crack lengths investigated.  

t h e  d a t a  from these t e s t s  i s  very limited it does indicate t h a t  t he  

apparent K~~ v d u e  increases a t  a ~ ( ~ ~ ~ / a y ~ ) ~  r a t i o s  l e s s  than about 

2.5. 

Specimens 1/4 inch and 1 / 2  inch thick, having 

Load versus e l ec t r i c  poterrtid. records exhibited 

W h i l e  

* 
The s t a t i s t i c a l  test  used w a s  based on the  r a t i o  of t he  difference i n  

averages t o  the range f o r  t h e  sample (see r e f .  29, section 2.2.1). 
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Further da t a  regarding the  influence of crack length  i s  shown i n  

Figure 1 2  f o r  a 285 k s i  yield s t rength  maraging s-Leel. 

1 /4  inch th ick  specimens were machined from a s ingle  one-inch th i ck  p l a t e  

of t h i s  s t ee l .  Load-potential records shoved dis t inct ,  popin ind ica t ion  

f o r  all crack lengths, and within the  s c a t t e r  no t rend  of 

length i s  noted. 

a ra t io  of ao/(KIc/uys)2 of about 3.8. A r a t i o  of 2 . 5  would correspond 

t o  a crack length of about 0.085 inch. 

Various types of 

KIc with crack 

The shor tes t  crack length specimens of t h i s  s e r i e s  had 

The results discussed above ind ica te  t h a t  t h e  apparent KIP nay 

overestimate the  t rue value i f  t he  crack length  i s  less than some l i m i t )  

which m a y  depend on the  mater ia l .  For t h e  s tee ls  invest igated,  t h i s  l i m i t  

appears t o  correspond t o  a r a t i o  of ao/(KIc/uys)2 of about 2.5. However,) 

it should be emphasized t h a t  addi t iona l  da t a  on other types of alloys art- 

necessary t o  s e t  a firm lower l i m i t  on t h i s  r a t i o .  

Thickness Requirement 

The influence of specimen thickness i s  il1ustrat;ed -fn Figure 13 f c r  

t h e  242 ks i  y i e l d  s t rength  maraging s tee l .  

crack specimens and t h e  group of 23 bend specimens, both 0.45 inch th ick ,  

represent a l l  data  from Fig.  10 having su f f i c i en t  crack length .  ':'he onp 

inch  wide bend specimens with thicknesses from G . i  inch  fo 0.35 inch Fiere 

machined from the  broken halves of t he  0.45 inch  t h i c k  tension specimpns. 

The two smallest thicknesses, 0.1 and 0.15 inch yielded load dieplacem3nt 

records having w e l l  defined popin s teps  preceded by negl ig ib le  deviat ion 

from l i n e a r i t y .  The bend specimens at 0.25 and 0.35 inch  thickness rupture2 

completely at popin. Using t h e  same s ta t is t ical  procedure as employed i n  

ana lys i s  of t h e  crack length data ,  t h e  

thicknesses w a s  tes ted t o  determine whether i t  w a s  s ignif icankly g rea t e r  

The group of 18 s ingle  edge 

KIc f o r  each group of S m d l l e r  
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than the  average f o r  the  0.45 inch thick specimens. The differences 

were s ign i f i can t  at the  5 percent leve l  f o r  thicknesses 0.25 inch and 

lower but ,  not for  a thickness of 0.35 inch. On the  bas i s  of this 

analysis  it i s  concluded that specimens of t h i s  material thinner  than 

0.35 inch  axe l i k e l y  t o  give s igni f icant ly  higher 

specimens. 

of about 2.5. 

K I ~  values than th icker  

T h i s  thickness p a r t i t i o n  corresponds t o  a r a t i o  of B / ( K I c / ~ s ) 2  

Additional da ta  i l l u s t r a t i n g  the thickness e f f e c t  i s  shown i n  Figure 1 4  

f o r  259 y i e ld  s t rength maraging s t ee l .  Single edge cracked and center 

cracked tension specimens and bend specimens of th ree  thicknesses were 

machined from a s ingle  one-inch thick p la t e .  

crack lengths  were invest igated for the  bend specimens while a s ingle  

s i ze  w a s  used f o r  t he  tension specimens. 

the  RW d i rec t ion .  

Course of these t e s t s  and typ ica l  load-potential records a re  shown i n  

t he  i n s e t s  of Figure 14. The e f f ec t  of reducing the  specimen thickness 

w a s  t o  produce load-potential  records which were more d i f f i c u l t  t o  i n t e rp re t ,  

and tests at  1/8-inch thickness gave records which exhibited no c lear  popin 

ind ica t ion .  Attempts t o  s e l e c t  popin loads from these records on the  bas i s  

of deviat ions from l i n e a r i t y  ( indicated by arrow i n  Fig. 14)  gave 

values  which s igni f icant ly  exceededthe average establ ished by t e s t s  a t  

t h e  two l a rge r  thicknesses.  

B/@Ic/%S)2 somewhere between 2 and 3 i s  necessary f o r  v a l i d  KIc 

determination. 

t h e  same r e s u l t .  

Two widths and several  

All specimens were cracked i n  

E lec t r i c  po ten t ia l  measurements were made during the 

KIc 

These d a t a  a l so  suggest t h a t  a r a t i o  of 

Similar t e s t s  on 7075-T6 aluminum a l loy  gave e s sen t i a l ly  
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Further da t a  fo r  maraging s t ee l  at a y i e ld  s t rength l e v e l  of 285 k s i  

i s  shown i n  Figure 15. 

of thickness were machined from a s ingle  one-inch th i ck  p l a t e  and cracked 

i n  the  RW or RT d i rec t ion .  

records were obtained a t  a l l  thicknesses investigated and within the  

sca t t e r  no t rend  of KIc w i t h  thickness i s  noted. The th innes t  specimens 

of t h i s  se r ies  had a B / ( K I c / ~ y S ) 2  

correspond t o  a thickness of 0.090 inch.  

Specimens of various types covering a wide range 

Well defined popin ind ica t ions  on load-potential  

of about 3.5. A r a t i o  of 2.5 would 

The data  reported here regarding t h e  e f f e c t  of thickness ind ica te  

t h a t  t he  apparent 

even though d is t inc t .  p o g i ~  indications are obtaiiied. I n  other  cases the  

e f f ec t  of reducing t h e  thickness i s  t o  render t h e  popin ind ica t ion  so  

i nd i s t inc t  as t o  make unambiguous in t e rp re t a t ion  of t he  record extremely 

d i f f i c u l t .  A l imi t ing  value of B/(KIc /o ; r s )2  f o r  a va l id  KIc t e s t  on 

the  a l loys  investigated appears t o  be  about 2 . 5 .  However, it should b e  

emphasized t h a t  t he  l imi t ing  value of t h i s  r a t i o  may vary from a l loy  t o  

a l loy  and fur ther  t e s t s  of t h i s  type are needed t o  e s t a b l i s h  a conservative 

lower l i m i t .  

KIc value m a y  increase below a c e r t a i n  l imi t ing  thickness 

Ligament Requirement 

I n  order t o  inves t iga te  t h e  e f f e c t  of ligament length  (W-a,), a series 

of bend t e s t s  was made f o r  242 k s i  y i e l d  s t rength,  maraging s tee l  specimens 

having a constant crack length  bu t  varying width ,  as shown i n  Figure 1 6 .  

The crack length selected (0.43 inch) f o r  t h i s  series of t es t s  w a s  adequate 

for  a v a l i d  KIc determination, as can be seen from Figure 10. All 

specimens ruptured completely at popin and within t h e  s c a t t e r  of t h e  data 
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there  i s  no trend of KIc with (W-a,). The r e s u l t s  do not c lear ly  define 

an upper l i m i t  on (W-a,), but  examination of the load-displacement records 

f o r  t h i s  se r ies  of t e s t s  showed that the deviation from l i n e a r i t y  preceding 

rupture w a s  very small fo r  all specimens except those having the  smallest 

ligament. The deviations from l inea r i ty  fo r  the  lat ter specimens were 

d i s t i n c t l y  greater  which would tend t o  indicate that the l imi t ing  ligament 

length i s  not much l e s s  than the  smallest value investigated.  

information of this type i s  cer ta inly needed, the da ta  do indicate  t h a t  

While more 

higher ao/W values can be used than were previously suggested. 

Summary of Suggested S ize  Requirements 

On the bas i s  of the information presented it i s  suggested that both 

the  crack length and thickness should be greater  than some multiple of 

(K / ) 2  f o r  a va l id  KIc t e s t .  The da ta  available so far indicate  

t ha t  t h i s  multiple should not be l e s s  than about 2.5. T h i s  value, however, 

I C  %s 

should be regarded as  a preliminary estimate pending development of adequate 

da ta  on a var ie ty  of a l loys.  

smaller than the crack length; however, r a t i o s  of crack length t o  width 

Apparently the ligament length can be somewhat 

greater  than about 0.5 are undesirable because the  K ca l ibra t ion  curve 

f o r  s ingle  edge cracked tension and bend t e s t s  (see Figs .  6 and 7 )  r i s e s  

very steeply at the high a/W values. Under these circumstances s m a l l  

e r ro r s  i n  measured crack length can have undesirable large e f f e c t s  on 

the  calculated KIc values. 

Specimen dimensions consistent with the requirement t h a t  neither a 

should be l e s s  than 2.5 ( K I c / ~ S ) 2  are  considerably greater  than  nor B 

h i the r to  considered necessary ( r e f s .  5, 8, 10). 

notch bend specimen about 2 inches thick and 4 inches deep would be required 

For example, a crack- 
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f o r  a mater ia l  having a KIc of 160 

180 k s i .  The specimen dimensions for  

toughness, such as HY-80 s t ee l ,  would 

k s i - i r d 2  and a y i e l d  s t rength of 

lower s t rength mater ia ls  of high 
I 

probably be qui te  impractical .  However, 

under some circumstances, KIc 

s t rength materials. There a re  widely used s t ruc tu ra l  mater ia ls  with 

y ie ld  strengths below 100 k s i  having values su f f i c i en t ly  low t h a t  

plane s t r a i n  f rac ture  toughness measurements can be m a d e  with specimens 

of prac t ica l  s i ze s .  Furthermore, i f  a su f f i c i en t ly  l a rge  specimen i s  used 

t h a t  i s  designed t o  "match" the  expected appl icat ions,  the  f a c t  t h a t  t h e  

specimen i s  not la rge  enough t o  provide an acceptable KIc value is, i n  

i t s e l f ,  an assurance t h a t  the mater ia l  i s  tough enough f o r  t h e  appi icat ion.  

The word "match" i s  used here i n  the  sense t h a t  the  specimen has a thickness 

appropriate t o  the  appl icat ion and a crack length  consis tent  with inspect ion 

capabi l i ty ,  r e l i a b i l i t y  and service circumstances. 

t e s t i n g  i s  useful  f o r  evaluation of lower 

KIc 

Va r i ab i l i t y  of KIc Results 

It was pointed out i n  the  INTRODUCTION t h a t  t h e  plane s t r a i n  crack 

toughness of a given sample of mater ia l  i s  characterized by the d i s t r ibu t ion  

of K I ~  values determined on specimens taken from t h e  sample. The d a t a  

obtained on t h e  NASA-NRL Cooperative Program and presented i n  Figures 10 

through 16  for three heats of maraging s t e e l  i s  su f f i c i en t  t o  permit a 

judgement concerning the  v a r i a b i l i t y  of K I ~  r e s u l t s .  A s t a t i s t i c a l  

analysis  o f t h e  maraging s t e e l  data,  shown i n  Table 11, gives  the  mean 

value x, standard deviation S, the  coef f ic ien t  of v a r i a t i o n  S / x  f o r  

a l l  va l id  KIc information. Added t o  t h i s  t a b l e  a r e  some results obtainrd 

on 1/2-inch thick 7075-T651 aluminum a l loy  p l a t e .  
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It w i l l  be noted t h a t  the  coeff ic ients  of va r i a t ion  did not d i f f e r  

s ign i f icant ly  among the  various alloy conditions t e s t ed  and a re  within 

the  range that might be expected f o r  a mechanical property r e l a t i n g  t o  the  

f r ac tu re  of meta l l ic  a l loys .  

da t a  obtained by Driscol l  f o r  SAE 4340 (Ref. 30) w a s  given i n  R e f .  3. 

This analysis  showed a coeff ic ient  of va r i a t ion  of 0.041 and 0.044 f o r  

t e s t s  on two types of impact machines. These values a re  not considered 

t o  be s igni f icant ly  d i f f e ren t  from those given f o r  the  coef f ic ien t  of 

va r i a t ion  of KIc i n  Table 11. 

For example, a s t a t i s t i c a l  ana lys i s  of impact 

PRACTICAL SPECIMEN TYPB 

This sec t ion  dea l s  w i t h  specif ic  recommendations regarding the  

t e s t  specimens, t h e i r  load dimensions of t he  various types of 

requirements, and various other considerations t h a t  enter  i n t o  the  

choice of a specimen type f o r  a pa r t i cu la r  application. 

of the  various types of specimens are given i n  appendix B .  

t h i s  sect ion included some comments on the use of surface crack specimens 

and precracked Charpy specimens. 

KIc 

Detailed drawings 

I n  addition, 

Recommended Specimen Dimensions and 

Corresponding Load Requirements 

Table I11 i s  a summary of recommended minimum specimen dimensions f o r  

s i x  d i f f e r e n t  types of p l a t e  specimens and f o r  the  crack-notched round bar,  

based on the discussion i n  the  preceding section. 

assumed t h a t  t he  depth of the annular crack-notch i n  the round bar ,  ( D  - d)/2, 

is  equivalent t o  the  crack length i n  t h e  edge-crack p l a t e  specimens and 

therefore  e q u d  t o  2.5(KIc/%S)2. 

For consistency it i s  

The r a t i o  of t o t a l  crack length t o  
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specimen width i n  the  p l a t e  specimens, and the  r a t i o  

bar ,  i s  taken as 0 . 5 * *  

t o  extend the  KIc 

and the  recognition t h a t  the  KIc measurement accuracy de te r io ra t e s  with 

increasing r e l a t i v e  crack length.  

t he  r a t i o s  of required load t o  y i e ld  s t rength corresponding t o  t h e  

dimensions l i s t e d ,  assuming t h a t  t he  cha rac t e r i s t i c  mater ia l  dimensions 

(KIc/UyS)2 i s  equal t o  one inch. 

mater ia l  dimension, the specimen dimensions whould be proportional t o  

(KIc/uyS)', and the  required load proportional t o  ( K I c / 9 S ) 4 .  

d/D i n  the  round 

This choice i s  a compromise between the  des i r e  

measurement l i m i t  fo r  a given specimen as far as possible,  

The las t  column i n  the  t a b l e  gives 

For other values of t h i s  cha rac t e r i s t i c  

To determine su i tab le  specimen dimensions f o r  an unfamiliar mater ia i  

it i s  f i r s t  necessary t o  decide the  highest l eve l  of (KIc/%S)2 t h a t  t he  

mater ia l  i s  l i k e l y  t o  exhib i t .  Figure 1 7  i s  provided t o  help the reader 

i n  t h i s  respect.  I n  t h i s  f igure  the  lower pa r t  of the  curve which bounds 

the "Region of Current Measurements" i s  based on the  highest  values 

of KIc 

180,000 and 3000,000 p s i .  The horizontal  dashed l i n e  represents  the  

highest l eve l  of (KIc/uys)2 t h a t  has been reached t o  da t e .  

shows ( K  / u  

K I ~  

t h a t  have been measured f o r  s t e e l s  w i t h  y i e ld  s t rengths  between 

The f igure  

)' versus the r a t i o  of y i e ld  s t rength  t o  Young's modulus, 
I C  YS 

*Previous prac t ice  has been t o  use a d/D of 0 .707  f o r  the notched 

round on the basis that  t h i s  gives the  highest  K f o r  a given notch 

(ne t  area) s t r e s s .  The authors assume t h a t  addi t iona l  KI- measurement 

capacity can be gained w i t h  negl igible  loss i n  accuracy by using a 

d /D = 0.5. 

performed t o  check the v a l i d i t y  of t h i s  assumption. 

However, it should be noted t h a t  no experiments have been 
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ays/E, so t h a t  nonferrous a l loys  could be p lo t ted  f o r  comparison. 

i s  in su f f i c i en t  information t o  provide upper bound curves fo r  non- 

ferrous alloys, but a l l  nonferrous alloy r e s u l t s  k n m  t o  t h e  

authors l i e  well  below the  bounding curve f o r  s t e e l s .  It i s  , 

recommended that specimen dimensions f o r  unfamiliar materials should be 

based on values of ( K I c / ~ s ) 2  taken from the  bounding curve i n  Figure 1 7  

whenever the dimensions of the available mater ia l  stock permit. 

specimen dimensions w i l l  usual ly  be more than adequate. 

t o  use smaller dimensions, then the  adequacy of t he  dimensions can only 

be decided a f t e r  the  tests have been conducted. 

There 

These 

If it i s  necessary 

Considerations i n  Selecting Specimens fo r  

Pa r t  i c u l m  Appli ca t  ions 

On the  b a s i s  of t he  foregoing recommendations concerning specimen 

dimensions and load requirements, it would appear that bend ( o r  possibly 

crack l i n e  loaded specimens) would be the  only ones of i n t e r e s t  f o r  

K I ~  determination. However, under some circumstances other considerations 

than "efficiency" can determine t h e  se lec t ion  of a pa r t i cu la r  specimen 

type or  crack length t o  width r a t i o .  

Bend specimens ce r t a in ly  do have a wide range of application, and 

a r e  su i t ed  t o  t e s t i n g  p l a t e s  o r  forgings because d i r ec t iona l i t y  e f f ec t s  

can r ead i ly  be invest igated by sui table  or ien ta t ion  of the specimen w i t h  

respect  t o  the f i b e r .  

present  d i f f i c u l t i e s  due t o  t h e  l imited thickness available;  however, i n  

some cases extension pieces can be welded t o  the t e s t  sect ion.  If the 

t e s t s  must be conducted i n  a l imited l a t e r a l  space, such as might be 

Tests i n  t h e  short  t ransverse d i rec t ion  frequently 
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encountered i n  reactor tubes or a cryostat ,  t he  single edge crack t e n s i l e  

specimen offers the advantage of requiring a minimum amount of space 

normal t o  t h e  loading direct ion.  It should be noted t h a t  single edge 

crack tension specimens shorter than those recommended here have been 

used by some invest igators  (Ref. 31). The K cal ibrat ions given i n  

t h i s  report a re  not applicable t o  such short  specimens because of 

interact ion between t h e  s t r e s s  f i e l d s  of the loading holes and tha t  of 

t he  crack. 

d i f f i c u l t ,  and K cal ibrat ions fo r  short  specimens must be determined 

by experimental compliance measurements which a re  i n  themselves subject 

t o  several uncertaint ies  ( see Section on "K 

This in te rac t ion  makes an ana ly t ica l  s t r e s s  analysis extremely 

Calibrations of Specimens" ) . 
The center cracked and double edge cracked p l a t e  specimens a r e  of 

considerable i n t e r e s t  from a theore t ica l  standpoint since they a re  loaded 

i n  pure tension, and provide a base l i n e  f o r  t h e  development of other 

specimen types. 

from consideration i n  most p r a c t i c a l  applications of KIc t e s t i n g .  

However, they do provide a means for determining crack extension resis tance 

curves as discussed previously by the present authors (Ref. lo), and of 

investigating the  f r ac tu re  mode t r a n s i t i o n  i n  terms of the notch s t rength 

as a function of thickness change. 

Their high load and mater ia l  requirements exclude them 

While a crack length t o  w i d t h  r a t i o  of 0.5 has been recommended for 

the  p l a t e  specimens l i s t e d  i n  Table 111, there  i s  no reason why smaller 

values could not be used i n  special  circumstances providing there  i s  

adequate crack length.  

desirable t o  locate  the t i p  of t he  crack i n  Some par t icu lar  region of t he  

For example, i n  t e s t i n g  weldments it i s  frequently 
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metal s t ructure  and t o  r e l a t e  the  popin load t o  the 

t h i s  region. 

The circumferentially cracked round bar  has received considerable 

KIc value of 

I 
I a t ten t ion  i n  the  past  as a specimen fo r  use i n  studying the  influence 

of notch sharpness. I n  invest igat ions of t h i s  type it has the  advantage 

that notches of a pa r t i cu la r  contour may  be produced t o  close tolerances 

by cy l indr ica l  grinding o r  l a t h e  turning. 

Committee Report (Ref. 4 ) ,  this specimen provided w i t h  a very sharp notch, 

may be used t o  screen a l loys  regarding t h e i r  f r ac tu re  behavior i n  th ick  

sect ions.  However, aside from i t s  high load and mater ia l  requirement 

t he  cracked round bar i s  not wel l  suited f o r  t e s t ing  unless t he  

pa r t i cu la r  appl icat ion d i c t a t e s  t he  use of t h i s  type of specimen (e.g., 

an invest igat ion of t he  e f f e c t s  of cracks at  the  base of screw threads) .  

Whiie machined circumferential  notches are  r e l a t i v e l y  easy t o  produce t o  

close tolerances i n  the  notch round specimen fa t igue  cracking i s  d i f f i c u l t  

t o  control  so t h a t  the crack f ront  i s  concentric w i t h  t he  loading axis. 

I n  addition, spec ia l  precautions are necessary t o  reduce eccen t r i c i ty  of 

loading during t e s t i n g  i n  order t o  avoid undesirable s c a t t e r .  

A s  described i n  the  4th Fracture 
I 

K I ~  

I n  the  
I 
I absence of eccen t r i c i ty  the  f rac ture  propert ies  of t h i s  specimen w i l l  be 

l a r g e l y  controlled by the  region on the  crack circumference having the  

lowest toughness. The f a c t  t h a t  a cracked round bar f r ac tu res  without 

shear l i p s  i s  sometimes taken t o  mean tha t  t he  specimen may be used t o  

determine KIc values a t  much higher r a t i o s  of KIc/4rs than would be 

poss ib le  using p l a t e  specimens. This, of course, i s  not t r u e  since the 

absence of shear l i p s  does not assure the  absence of extensive p l a s t i c  
I 

I deformation i n  t h i s  or any other specimen. 
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Surface Crack Specimen 

The surface crack specimen was developed or ig ina l ly  fo r  the purpose 

of simulating flaws of a type which are  frequently encountered i n  service 

(Refs. 32, 3 3 ) ,  and i s  par t icu lar ly  valuable for  t h i s  purpose. 

t o  the  conditions which apply t o  all 

of KIc 

l imited t o  t h i s  purpose. 

information on the  e f f e c t s  of r e a l i s t i c  flaws on f rac ture  s t rength i n  

circumstances which are not amenable t o  a plane s t r a i n  f rac ture  mechanics 

analysis; for  instance, where the  net s t r e s s  i n  the  presence of the l a rges t  

expected f l a w  s ize  i s  between y ie ld  and t e n s i l e  s t rength.  

Subject 

tes t  specimens, measurements KIc 

can be made with surface crack specimens, but  they are  by no means 

Tests of surface crack specimens provide d i r e c t  

While it i s  not e f f i c i en t  t o  use surface crack specimens f o r  general 

t es t ing  it may sometimes be necessary t o  do so .  KIc 

required crack lengths (depths) fo r  surface crack specimens of pa r t i cu la r  

crack geometry should be no l e s s  than t h a t  f o r  other types of p l a t e  specimens. 

This leads t o  a thickness requirement fo r  t he  surface crack specimen which 

i s  twice t h a t  fo r  other p l a t e  specimens, since the  surface crack depth 

should be l e s s  than one-half the  thickness i f  the  conventional expression 

for  the  s t r e s s  i n t ens i ty  fac tor  i s  used (Ref. 2 ) .  

amount of d a t a  avai lable  which permits t h e  comparison of f rac ture  toughness 

values determined using surface crack specimens with those obtained from 

a var ie ty  of other specimen types.  

from the NASA-NRL Cooperative Progrm i s  i l l u s t r a t e d  i n  Figure 18, which 

shows the  effect  of crack s ize  fo r  surface crack specimens of 285 k s i  y i e ld  

strength maraging s t e e l  ( see  t a b l e  I) before fa t igue  cracking. 

I n  such cases the  

There i s  only a l imi ted  

Some information of t h i s  nature avai lable  

E lec t r i c  
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potent ia l  and acoustic 

measurements indicated 

instrumentation 

no s table  crack 

w a s  used on all specimens. 

extension at  crack s izes  greater  

These 

than 

proceeding m a x i m  load at t h i s  crack s izes .  

section of this report ,  a la rge  number of tests on t h i s  same p la t e  using 

a var ie ty  of other specimen ty-pes gave an average l eve l  of 

52 k s i  - 
the  same direct ion as those i n  the surface crack specimens or i n t o  the 

edges of the p la te .  The l e v e l  of  XI^ for the surface crack specimens 

closely approaches 52 k s i  - ( i n . ) l j 2  

Specimens having 

than a = 0.09 = 2.5 KIc/%s . 

a/(p2 = 0.02*, and only very small amounts of crack extension 

A s  discussed i n  the  last  

KIc 

independent of whether the cracks were propagating i n  

f o r  a/(p2 r a t i o s  above about 0.06. 

a/q2 values smaller than 0.06 have crack depths l e s s  

> 2  
These r e s u l t s  i l l u s t r a t e  t h a t  apparent KIc values determined using 

specimens with insuf f ic ien t  crack s ize  can be too high. The implication 

here i s  t h a t  the  strength of a specimen containing a small flaw could be 

underestimated by calculations based on the KIc values obtained from 

specimens containing la rger  cracks. 

observations have been obtained by Randall (Ref. 34) from t e s t s  on D6a s t e e l  

( scS = 249 k s i ) .  

has t r ea t ed  a very la rge  amount of d a t a  obtained from t e s t s  on surface 

crack specimens cut from 6Al-4V-Ti forgings. This analysis shows t h a t  

t h e  f rac ture  strength of specimens containing s m a l l  cracks tends t o  be 

under-estimated by calculations based on KIc values derived from specimens 

containing la rger  cracks. 

Additional da t a  supporting these 

Further i n  am unpublished s t a t i s t i c a l  analysis,  Randall 

Where (p2 i s  a crack shape parameter as discussed i n  reference 2 .  
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The main conclusion t o  be made a f t e r  examining a substant ia l  amount 

of surface crack specimen d a t a  i s  t h a t  considerable additional t e s t i n g  

i s  needed t o  define the  e f f e c t s  of crack shape and permit fur ther  comparisons 

between KIc values obtained using surface crack specimens and those 

obtained from other p l a t e  specimen types. For fur ther  information, t he  

reader i s  referred t o  papers by Kobayaski, Ziv and H a l l  (Ref. 35) and by 

Kobayashi (Ref. 3 6 ) ,  which give estimates of t he  s t r e s s  in tens i ty  f ac to r  

f o r  embedded e l l i p t i c a l  cracks t h a t  closely approach e i the r  f r e e  boundaries 

or coplanar e l l i p t i c a l  cracks. 

( R e f .  34) i s  pazt of a continuing program designed t o  y i e l d  additional d a t a  

on crack shape e f fec ts .  

The previously memtioned work by Randall 

Cracked Charpy Specimens 

Impact t e s t s  of cracked Charpy specimens a re  frequently employed 

f o r  screening al loys regarding the e f f e c t  of metallurgical var iables  on 

r e l a t i v e  toughness l e v e l  (e.g. ,  Refs. 37 and 38).  

energy loss divided by the i n i t i a l  uncracked area  (W/A) i s  reported. 

Some investigations have converted the W/A values d i r e c t l y  t o  

(or 

the  same as a conventional s ingle  edge crack bend t e s t .  

I n  t h i s  case the  pendulum 

P I C  

KIc) o r  have tes ted  t h e  specimen i n  slow bending, t r e a t i n g  it much 

The l imitat ions inherent i n  the  use of cracked Charpy specimens f o r  

measurement have been discussed previously i n  d e t a i l  ( R e f .  10) and KIc 

w i l l  only be b r i e f l y  reviewed here. 

t he  specimen s ize .  It should be evident from the  preceding discussion of 

s ize  requirements f o r  bend specimens t h a t  t h e  cracked Charpy w i t h  a width 

Of 0.394 i n .  and an a/W = 0.5 has a m a x i m u m  KIc measurement capacity 

The bas ic  l i m i t a t i o n  i s  of course 
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of only 0.28 ays, whether tes ted  i n  impact or  slow bending. 

impact the conversion of pendulum energy loss  t o  &$c involves at  l e a s t  

three assumptions: 

f rac ture  energy, ( 2 )  the  f rac ture  mcde corresponds t o  plane s t r a i n  conditions 

If tes ted  i n  

(1) all of the energy loss has been converted t o  

throughout the  e n t i r e  specimen cross-section, and (3) t h e  integrated f rac ture  

work divided by the f rac ture  area i s  equal t o  /$f,, b p l y i n g  no appreciable 

dependence of & on crack speed. It i s  possible t o  develop procedures 

t o  ident i fy  and correct f o r  extraneous energy losses .  However, f o r  the 

second assumption t o  be t rue  requires the  t e s t i n g  of suf f ic ien t ly  l a rge  
\ 

specimens t o  suppress the formation of side boundary p l a s t i c  regions* 

which would relax the  transverse constraint  responsible f o r  the plane 

strain conditions at the  crack front.  ,.:This requirement would correspond 

t o  t e s t i n g  bend specimens of suff ic ient  s ize  that complete f rac ture  occurs 

at popin, a condition that can be met i n  Charpy specimen s izes  only f o r  

very b r i t t l e  a l l o y s .  The use of W/A values f o r  screening al loys 

regarding t h e i r  r e l a t ive  KIc levels  i s  an uncertain procedure i f  the 

impact specimen f rac tures  under mixed mode conditions, unless it can be 

shown that the  mixed mode f rac ture  energies and the plane s t r a i n  f rac ture  

energies bear the same re l a t ion  among the alloy conditions investigated.  

*Attempts have been made t o  suppress the development of these p l a s t i c  

regions by the use of specimens containing b r i t t l e  boundaries. While t h i s  

technique may be useful  i n  some cases, it can lead t o  additional complexities. 

The possible d i f f i c u l t i e s  associated w i t h  suppression of side boundary 

deformation e i the r  by use of face grooves or b r i t t l e  boundaries are  

discussed i n  the  sect ion on Specimen Preparation and Testing. 
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INSTRUMENTATION 

The types and bas ic  pr inciples  of instrumentation sui table  f o r  

detect ing crack extension i n  f racture  toughness t e s t s  have been reviewed 

previously (Ref. 10) .  For plane s t r a i n  toughness t e s t ing ,  methods 

involving the measurement of displacements, e l e c t r i c a l  po ten t ia l  and 

acoustic emission are most sui table .  Recent developments concerning 

these three techniques a r e  described i n  t h i s  section. I n  addition, 

cal ibrat ion curves a r e  presented which permit estimation of the crack 

extension from records of load versus displacement o r  load versus poten t ia l  

change. These cal ibrat ions a re  useful  i n  analysis of popin indicat ions.  

Displacement Measurements 

The r e l a t ive  displacement referred t o  here i s  measured between 

points on e i the r  side of the end of the notch i n  edge cracked specimens, 

and across the  center s l o t  at  the  specimen center l ine i n  center cracked 

specimens. 

measurements (Ref. 10) .  A most sa t i s fac tory  method employs e l e c t r i c  

res is tance s t r a i n  gages mounted on a sui tably designed f lexura l  element 

which deforms e l a s t i c a l l y  as the crack notch or s l o t  opens. Krafft 

(Refs. 39, 40) has described the use of gages of t h i s  type i n  displacement 

measurements on center crack and s ingle  edge crack specimens. 

a bi-lobed c l i p  gage (Ref. 40) t o  measure displacements i n  a low temperature 

bath and at  high s t r a i n  rates. 

required t o  develop gages of a par t icu lar  type and care must be taken t o  

insure that adequate s e n s i t i v i t y  i s  combined with a high degree of l i n e a r i t y  

of output with respect t o  displacements at t h e  measuring points .  Linear i ty  

Various types of transducers have been used t o  make these 

He prefers  

I n  general, considerable e f f o r t  i s  
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of gage output i s  e s sen t i a l  i f  ambiguity i n  in te rpre ta t ion  of t e s t  

records i s  t o  be avoided. 

t he  l i n e a r i t y  i s  maintenance of regis tery at  the  measuring points and 

any sa t i s fac tory  design should provide f o r  posi t ive posit ioning during 

the  e n t i r e  course of a t e s t .  

A par t icu lar ly  troublesome problem affect ing 

A simple double cantilever beam gage has been developed by one of 

the authors (Ref. 41) which appears quite sui table  fo r  general KIc 

t e s t ing  and combines high sens i t iv i ty  w i t h  l i n e a r i t y  of output. 

f lexures  a re  cantilever arms arranged i n  the design shown i n  Figure 1 9 .  

These arms are  made from solution-treated be ta  titanium, which has a high 

r a t i o  of y ie ld  strength t o  modulus. Epoxy bonded foil resis tance s t r a i n  

gages axe fixed t o  e i the r  side of each arm and connected i n  the  bridge 

arrangement shown. Grooves i n  the  ends of t he  cant i levers  contact knife 

edges which a re  machined i n t o  edge-cracked specimens on e i the r  side of 

the  crack-slot .  

t o  a t t ach  smal l  knife edges by means of screws t o  the specimen surface 

at the  center l ine on e i the r  s ide of the crack-slot .  T h i s  method of 

locat ing the  gage has proven very sat isfactory i n  tha t  the gage i s  

pos i t ive ly  positioned during the en t i re  t e s t ,  and yet  released without 

damage when the  specimen ruptures.  

grooves i n  the beams and knife edges i n  the specimen i s  essent ia l  f o r  

s a t i s f ac to ry  operation of the gage. When cal ibrated by a supermicrometer, 

t h i s  gage i s  l i n e a r  within 0.0001 inch over the range of 0.200 t o  0.250 inch. 

The s e n s i t i v i t y  i s  about 37.5 mv per v o l t  per inch, giving a magnification 

fac tor  of about 750X fo r  an X-Y recorder s ens i t i v i ty  of 0.5 mv/in and a 

The 

For center cracked specimens it has been found sa t i s fac tory  

However, precision machining of the 
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bridge exci ta t ion of 10 v o l t s .  

power supplies and wiring techniques may be employed. 

commercially available converter, the  output of thy s t r a i n  gage bridge 

may be used t o  dr ive the s t r a i n  ax is  of the s t r e s s - s t r a in  recorder 

of a t e s t ing  machine. 

Conventional res is tance s t r a i n  gage 

By use of a 

Calibration curves r e l a t ing  t h e  displacements t o  r e l a t i v e  crack 

extension are shown i n  Figures 20 t o  22 fo r  several  commonly used f rac ture  

toughness specimens. These p l o t s  give the  dimensionless quantity vEB/P 

as a function of the  r a t i o  of crack length t o  specimen width. 

a re  defined on the  graphs. These ca l ibra t ion  curves were obtained using 

a gage length of 0.20 inch, and apply t o  any specimen having the  same 

geometric proportions as the ca l ibra t ion  specimens. S t r i c t l y  speaking 

the  gage length should a l so  be proportioned,; however, i t s  velue is not 

c r i t i c a l  providing the  length i s  l e s s  than t h e  crack length.  

The symbols 

Elec t r i c  Poten t ia l  Measurement 

The necessary equipment i s  i l l u s t r a t e d  i n  Figure 23, which gives 

a block schematic of  the set-up. 

a t  room temperature over t he  past  two years  has revealed a source of 

Experience with t h i s  method i n  t e s t s  

d i f f i c u l t y  i n  the pickup of i n t e r f e r ing  s igna ls  which produce spuri0u.s 

responses of the X-Y recorder. 

high re jec t ion  f o r  frequencies of 60 cps and above combined w i t h  a very 

low output inpedance, and f o r  these reasons normally encountered AC 

f i e l d s  do not pose a special  problem. 

wide band of frequencies such as an apparatus which produces a sput te r ing  

or  spark type discharge can cause interference.  Under most circumstances 

The voltfieter-arnplifier has an inherent ly  

However, devices which r ad ia t e  a 
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sa t i s fac tory  operation may be insured by sui table  shielding of the s ignal  

leads as indicated i n  Figure 23. 

shielded cable i s  used and that the  signal lead shield i s  connected only 

at the  specimen. 

Note that twisted pa i r ,  two-conductor 

I *  
No general recommendations can be made concerning the 

instrument grounds. 

c i rcu la t ing  i n  s t e e l  building frames and water pipes, and f o r  t h i s  reason 

it may be necessary t o  use a sepaxate earth-ground i so la ted  from the 

n e u t r d  s ide of the  AC l i n e .  

Substanial currents a re  frequently encountered 

The electronical ly  r e w a t e d  constant current supply may be replaced 

by a combination of a storage c e l l  and a current controll ing b a l l a s t  res is tance 

should be high relative t o  that of the  specimen, and r e s i s t o r  i n  se r i e s  with the 

specimen. This should have a :luw temperature coeff ic ient  While b a t t e r i e s  pro- 

vide a law cost source of current, they lack the  convenience of a good power 

supply. 

output of the  regulated power supply, but i f  suf f ic ien t  i n  magnitude 

w i l l  influence the current drawn from t h e  ba t t e r i e s .  

For example, changes i n  contact res is tance w i l l  not influence the  set 

Previous recornendations made by the  present authors included 

a descr ipt ion of yokes t h a t  clamped t o  specimen and positioned the poten t ia l  

probes at a s m a l l  fixed distance from the  crack t i p .  

of necessity, ra ther  heavy and consequently i n e r t i a  forces tended t o  

damage the probe points  when a specimen ruptured-so that frequent 

resharpening of t he  points w a s  necessary. 

stainless wire a t  specified positions e i the r  side of the notch on the  edges 

of edge-cracked t e n s i l e  and bend specimens. 

specimens the wires a re  fastened t o  the specimen on e i the r  side of the 

These yokes were, 

The present pract ice  is  t o  fas ten  

In the  case of center-cracked 

\ 
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crack at  the center l ine.  These posi t ions a re  m t h e r  from the  crack t i p  

than those obtained using the  previously described yokes. These new 

posi t ions r e su l t  i n  some l o s s  i n  sens i t iv i ty ;  however, experience has 

shown t h a t  t h e  s e n s i t i v i t y  i s  more than adequate, and t h a t  t he  measured 

poten t ia l s  are less sens i t ive  t o  s m a l l  shif ts  i n  posi t ion of t h e  pickup 

points .  

t he  specimen ( s t a in l e s s  s t e e l  wire i s  convenient fo r  t h i s  purpose) and 

I n  t h e  case of s t e e l  specimens the  wires may be spot welded t o  

the  s ignal  leads t o  t he  voltmeter-amplifier simply clipped onto the  ends 

of these wires. For nonferrous metals t h e  wires may be fastened by means 

of small screws f i t t i n g  i n  tapped holes.  

Calibration curves r e l a t ing  the  r a t i o  (E/Eo) of measured po ten t i a l  

t o  t he  poten t ia l  at zero crack length* t o  t h e  r e l a t i v e  crack length a re  

shown i n  Figures 24 and 25 fo r  t he  new probe posi t ions.  

t o  note tha t  fo r  t he  probe posi t ions shown, t h e  ca l ibra t ion  curves fo r  

It i s  important 

symmetrically cracked p la te  specimens (Fig.  25) w i l l  y i e ld  t h e  average 

of t he  crack extension at each crack t i p .  

Acoustic m i s s i o n  

Present techniques f o r  detect ion of crack sounds (Ref. 42 )  provide no 

way t o  r e l a t e  the  acoustic emission t o  the  amount of crack propagation tha t  

has occurred. Also it may be d i f f i c u l t  t o  eliminate sources of extraneous 

noise.  A t  present the  acoustic method bes t  serves as a supplement t o  t h e  
* 

*A procedure fo r  deriving Eo from t h e  measured i n i t i a l  crack length 

and the  ca l ibra t ion  curve i s  described i n  reference 10. 
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previously described techniques. For example, the presence or absence 

of sound indicates  whether a deviation i n  l i n e a r i t y  of the load-displacement 

record i s  due t o  crack propagation on a f ine  scale  or  t o  p l a s t i c  flow at 

the  crack t i p .  
I -  

Comparison of the  Methods 

Advantages and l imi ta t ions  of various crack extension detection 

techniques were discussed previously (Ref. lo). However, a b r i e f  

comparison of the  three  methods recommended f o r  plane s t r a i n  toughness 

t e s t i n g  should be helpful at t h i s  point. The acoustic method has the 

grea tes t  inherent s ens i t i v i ty  t o  crack extension and responds only t o  

ac tua l  crack movement. However, both the  e l e c t r i c  po ten t ia l  and displacement 

gage techniques have more than suff ic ient  s ens i t i v i ty  fo r  plane s t r a i n  

toughness testing. 

influenced by crack t i p  p l a s t i c  flow except insofar  as t h i s  changes 

An e l e c t r i c  potent ia l  measurement i s  not appreciably 

the  shape of the crack. Therefore non-linearit ies i n  the load-potential  

record are  almost en t i r e ly  due t o  crack movement. 

displacement, on the  other hand, w i l l  be influenced by both crack t i p  

The crack opening 

p l a s t i c  flow and crack extension. 

displacement record therefore can be a ref lec t ion  of e i the r  of these 

Nonlinearity i n  a load-crack opening 

influences.  

With the  above thoughts i n  mind, it would seem desirable  t o  use the 

displacement gage method i n  combination with a measurement of e l e c t r i c  

po ten t i a l  or acoustic emission. I f  only one technique i s  employed the 

most generally sa t i s fac tory  w i l l  be  that of measuring the crack opening 

displacement since it requires  the  l e a s t  mount of complicated electronic  
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gear and is  most e a s i l y  adapted t o  a var ie ty  of t e s t i n g  s i tuat ions,  

par t icular ly  when t e s t s  are t o  be conducted at other than room temperature. 

CRITERIA FOR ANALYSIS OF LOAD-DISPLACEMENT RECORDS 

A s  discussed i n  the f irst  section of t h i s  report ,  the  K I ~  value 

i s  computed on the basis of the load corresponding t o  a well-defined 

unstable advance of the crack. The progress of crack extension with 

load during a t e s t  i s  generally followed by means of a l i n e a r  displacement 

gage such as the one described i n  the preceding section. The analysis 

of load-displacement records requires the  development of sui table  popin 

c r i t e r i a  and methods of da ta  analysis .  

it i s  helpful t o  consider some of the complications associated with the  

problem, and t o  out l ine the types of load-displacement records encountered 

i n  the NASA-NRL Cooperative Program. 

However, before discussing these 

It might be expected t h a t  a t e s t  specimen which met the s ize  requirements 

outlined i n  the  section on SPECIMEN SIZE REQUIREMENTS would exhibi t  a 

load-displacement record which w a s  e a s i l y  in te rpre tab le  i n  terms of t he  

load corresponding t o  the onset of unstable f rac ture  under plane s t r a i n  

conditions. However, such idea l  behavior i s  not always real ized.  

I n  what follows it w i l l  be assumed t h a t  t h e  commonly described popin 

behavior i l l u s t r a t e d  schematically i n  Figure 2 i s  obtained. 

of behavior w a s  observed f o r  the al loys tested thus far i n  t h e  NASA-NRL 

Cooperative Program, and therefore characterizes t h e  data shown i n  the  

section on SPECIMEN SIZE REQUIREMENTS. However, it i s  important t o  

r ea l i ze  that t h i s  behavior w i l l  not be encountered f o r  all engineering 

al loys.  

This type 

For example, SAE 4340 tempered a t  temperatures above about 7500 F 



47 

does not exhib'it d i s t i n c t  popin steps but  ra ther  a gradually developing 

crack extension t o  maximum load, the  amount of which decreases with 

increasing thickness. 

avai lable  concerning al loys exhibiting such charac te r i s t ics  and it i s  

not yet  c lear  as t o  whether the  methods of analysis t o  be discussed 

i n  t h i s  section w i l l  apply t o  them. 

Only a re la t ive ly  s m a l l  amount of information i s  

Types of Load-Displacement Records 

Typical. load-displacement records a r e  shown i n  Figure 26 fo r  a 

se r i e s  of t e s t s  on specimens of various thickness. 

su f f i c i en t ly  thick and the material  homogeneous the  load-displacement 

diagram w i l l  be essent ia l ly  l i n e a r  t o  maximum load as shown by record A-1. 

I n  this case the  KIc value i s  equal t o  the KI value computed on the 

b a s i s  of the maximum load and t h e  i n i t i a l  crack length.  

of a specimen yielding this type of record w i l l  exhibi t  l i t t l e  or no shear 

l i p s .  

produce small increments of crack extension at  loads close t o  the maximum 

as indicated by record A-2 .  

"pre-cracking" will be very small, and 

maximum load w i l l  then represent a useful measure of the f rac ture  toughness 

f o r  t he  bulk of the  material  i n  the specimen. 

a l loy s t ruc ture  i s  strongly laminated or contains large pa r t i c l e s  of a 

randomly dispersed second phase, isolated burs t s  of crack extension of 

appreciable magnitude may occur at loads substant ia l ly  l e s s  than the  

maximum as shown by record A-3 .  I n  t h i s  record one or more d i s t i n c t  

popins a re  observed well below the  maximum load separated by portions of 

If the  specimen i s  

The f rac ture  surface 

Material inhomogeneities encountered i n  most wrought a l loys can 

I n  many instances, the magnitude of t h i s  

KIc computed on the  bas i s  of the 

On the other hand, i f  the 
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t he  curve showing no crack extension. 

considerable v a r i a b i l i t y  i n  the  f rac ture  propert ies  of t he  sample. 

an ident ica l  specimen taken from another locat ion might rupture completely 

at a load near t h a t  corresponding t o  the  f irst  popin of record A-3 .  

Obviously, the  significance of these s m a l l  s teps  i n  the  A - 3  type record 

depends on the  s i z e  and d i s t r ibu t ion  of t he  s t ruc tu ra l  u n i t s  which f rac ture  

t o  produce the  indications.  

Behavior of t h i s  type may indicate  

Thus, 

If the thickness of t he  specimen i s  barely suf f ic ien t  t o  produce an 

A - 1  type record, then reducing t h i s  thickness by perhaps one-half may 

r e s u l t  i n  records of type B shown i n  Figure 26. 

read i ly  interpretable  i n  t h a t  they consis t  of a well-defined l a rge  popin 

followed by several  bu r s t s  of crack extension tha t  lead t o  complete 

rupture w i t h  only a moderate increase i n  the  load. 

homogeneities a re  again revealed by s teps  i n  the  load displacement 

diagram preceding f i n a l  rupture as indicated by records B-2 and E-3.  

These steps have t h e  same significance as when observed i n  type A records.  

These records are  a l s o  

The e f f e c t s  of i n -  

With fur ther  reduction i n  specimen thickness, the  load-displacement 

records change from the eas i ly  in te rpre tab le  type B t o  present ly  

uninterpretable types such as C .  

t o  a thickness dependent f rac ture  mode t r a n s i t i o n .  Thus, i f  t h e  thickness 

of a specimen giving a type B record i s  reduced by, say, a fac tor  of 

about four, d i s t i n c t  popin indicat ions may become completely indef in i te ,  

as i n  the  C-1 type record i n  Figure 26. T h i s  record i s  characterized by 

an i n i t i a l  smooth deviation from l i n e a r i t y  followed by a s teeply r i s i n g  

curve made up of segments containing s t eps  which a re  of the  same magnitude 

This change i n  popin behavior corrosponds 
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or  smaller than the precracking which characterized record typed A-2 

and 13-2. These s m a l l ,  indef in i te  steps, coupled w i t h  t he  steep continuous 

r i s e  i n  load t o  f i n a l  rupture, indicate t h a t  crack extension i s  accompanied 

by considerable p l a s t i c  flow. It i s  not possible t o  derive a value of 

KIc 

i n i t i a l  crack movement t o  re lax  the constraints responsible f o r  plane 

s t r a i n  conditions at the crack t i p .  

i s  encountered, which i s  similar t o  C - 1  except f o r  the r e l a t ive ly  

large s tep  which is  preceded by considerable cracking under r i s ing  load. 

This behavior i s  frequently observed when gross inhomogeneities a re  present 

such as the various zones i n  a welded s t ructure .  Under these circwnstances 

the  advancing crack front  may suddenly break through a b r i t t l e  region and 

the= be arrested.  

da ta  because of the  excess p l a s t i c  flow accompanying the f rac ture  process 

preceding the  apparent popin. 

from such a record because suf f ic ien t  p l a s t i c  flow accompanies 

Occasionally a record of type C-2 

Such records cannot be analyzed t o  y ie ld  useful  KIc 

Between the readi ly  analyzable records of types A and B and the  

unanalyzable type C l i e  t r ans i t i ona l  forms. These exhibit  some 

nonlinearity preceding a popin indication of ra ther  s m a l l  magnitude which 

i s  followed by a la rge  amount of crack extension under r i s i n g  load. Some 

of these records can y ie ld  useful  

It i s  i n  t h i s  t r ans i t i on  region that  popin c r i t e r i a  are  needed. 

KIc data while others should be rejected.  

Cr i t e r i a  and Data Analysis 

Popin c r i t e r i a  and da ta  analysis procedures should be compatible with 

the  pr inc ip les  of l inear  e l a s t i c  f racture  mechanics, and ye t  be adaptable 

t o  an uncomplicated and objective procedure fo r  analysis of t e s t  records. 
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The l imi ta t ions  of our present knowledge require  a cautious approach t o  

t h i s  problem. Specif ical ly ,  it i s  important t o  have a method tha t  w i l l  

insure  the discarding of records such as C - 1  and C-2 which may y ie ld  

KIc values tha t  are too high. I n  formulating a procedure, a t t en t ion  

w a s  given t o  the  large number of trial KIc 

course of the  NASA-NRL Cooperative Program. 

t e s t s  made during the 

The suggested da ta  analysis procedure may be i l l u s t r a t e d  with the  

load-displacement records* shown i n  Figure 27, which a re  typ ica l  of 

those obtained with bend specimens. The bas i s  fo r  the  development of 

t h i s  procedure i s  given i n  Appendix A .  

t h e  secant OB. The reciprocal  slope of OB should be l a rge r  than t h a t  

of t he  i n i t i a l  l i n e a r  portion OA by 6 percent i n  t h e  case of  s ingle  edge 

The f i rs t  s tep  i s  t o  construct 

crack tension or  bend specimens providing 

i n  t h e  case of center- or  double-edge-cracked tension specimens, providing 

2a0/W i s  about 0.5. For other values of ao/W t h e  slope of OB can be 

ao/W is about 0.5, and 2 percent 

obtained by reference t o  the  development given i n  appendix A .  

This secant es tabl ishes  the  upper l i m i t  on permissible deviation 

from l i n e a r i t y  Avi preceding the  popin indicat ion.  A popin indicat ion 

i s  defined as a temporary m a x i m u m  i n  the  load displacement curve followed 

by increase of t h e  displacement without t h e  load r i s i n g  above t h i s  maximum 

value. To meet t he  requirement on deviat ion from l i n e a r i t y  t h i s  load 

maximum must l i e  between t h e  l i n e s  OA and OB (Avi < ab) .  The ac tua l  

*A s i m i l a r  procedure can be developed f o r  load-potent ia l  records.  

However, as discussed i n  the  sect ion INSTRUMENTATION, t h e  po ten t i a l  measurement 

i s  qui te  insensi t ive t o  crack t i p  p l a s t i c  flow and f o r  t h i s  reason i s  not 

recommended f o r  general KIc t e s t ing .  
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appearance of the  popin indicat ion w i l l  depend on the combined s t i f f n e s s  

of the specimen and t e n s i l e  machine. 

t r a n s i t i o n a l  behavior corresponds t o  a r e l a t i v e l y  compliant bend specimen 

I n  Figure 27 t he  record i l l u s t r a t i n g  

and the load drops abruptly at popin. If the  s t i f f n e s s  of the  t e n s i l e  

machine were decreased suf f ic ien t ly ,  the  load would remain e s sen t i a l ly  

constant during popin as indicated by t h e  horizontal  l i n e  mn. 

present purposes the  popin displacement 

horizontal  dis tance mn between the  point of maximum load and the  load 

displacement curve. 

deviat ion from l i n e a r i t y  (dis tance ab), t he  popin i s  considered t o  be 

sa t i s fac tory .  

For the  

Av is  taken equal t o  the  P 

If Avp i s  at l e a s t  equal t o  the  maximum permiss 

Of t he  records shown i n  Figure 27, t h a t  representing t r a n s i t i o n a l  

behavior i s  acceptable because a popin s tep  of su f f i c i en t  s i z e  could be 

found t h a t  w a s  not preceded by excessive deviat ion frm l i n e a r i t y .  The 

KIc calculated from such a record i s  considered va l id  providing the 

specimen dimensions meet the  requirements outlined i n  the  sect ion on 

SPECIMEN SIZE REQUEUBENTS and providing proper precautions were followed 

regarding specimen preparation and t e s t i n g  procedure. 

of type C-1 or C-2 a re  acceptable. I n  the  case of C - 1  no s t ep  of the  

required s i ze  can be found and i n  the case of C-2 excessive deviat ion 

from l i n e a r i t y  procedes popin. 

ana lys i s  of ac tua l  load-displacement records.  

Neither records 

I n  appendix A examples a re  given of the  

SPECIMEN PREPARATION AND TESTING 

This sect ion i s  concerned w i t h  t ose aspects of specimen preparation 4: 
and t e s t i n g  which require  spec ia l  a t t en t ion  i n  order t o  insure sa t i s f ac to ry  



52 

accuracy i n  plane s t r a i n  f rac ture  toughness measurements w i t h  the  p rac t i ca l  

specimen types de ta i led  i n  appendix B.  

information of specimen preparation and t e s t i n g  was given previously 

( R e f .  lo), and what. follows i s  an attempt t o  up-date t h i s  mater ia l .  

A considerable amount of general 

Fatigue Crack S t a r t e r  Notches 

The d e t a i l s  of s t a r t e r  notches given previously (Ref. 10) have been 

found generally sa t i s fac tory .  However, the  authors now prefer ,  where 

possible,  t o  use a chevron notch s t a r t e r  of the  type shown i n  Figure 28 

f o r  edge cracked specimens. 

very high s t r e s s  concentration a t  the  chevron t i p  which insures t h a t  t he  

fa t igue  crack can be s t a r t ed  i n  a reasonable length of time at  a low 

stress. The radius at t h e  base of the  chevron is 0.01 inch maximum,  a 

value eas i ly  achieved with conventional mi l l ing  or grinding equipment. 

The fatigue crack should be extended su f f i c i en t ly  beyond the s t a r t e r  

This geometry has t h e  advantage of a 

notch t h a t  t h e  crack t i p  s t r e s s  f i e l d  i s  not influenced by the  notch shape. 

No information e x i s t s  t o  c losely e s t ab l i sh  t h e  required dis tance.  However, 

experiments made w i t h  both sharp V notches and square ended narrow s l o t s  

as s t a r t e r s  show t h a t  l a rge  extensions a re  not necessary. 

Figure 29, the apparent 

38 and 40 k s i - i d 2  f o r  s ingle  edge notch specimens containing V notches 

w i t h  a 0.00025-inch root radius or s l o t s  made w i t h  a 0.012-inch th ick  

jeweler ' s  saw. With progressive fat igue crack extension from the  s t a r t e r  

t h e  apparent KIc 

ksi-in1I2. The amount of fa t igue crack extension required t o  produce a 

constant KIc value should be l a rge r  the  milder t he  d iscont inui ty  

According t o  

KIc value for 7075-T6 aluminum a l loy  i s  between 

value decreases t o  a c o n s t a t  value between 28 and 31 



53 

represented by the  s t a r t e r ,  and th i s  e f f e c t  i s  observed i n  Figure 29, 

with t h e  sawed s l o t  requiring the greater  extension.* 

t o  note t h a t  t he  magnitude of the popin as revealed by the  load-potent ia l  

It i s  in t e re s t ing  

records shown i n  Figure 29 i s  very large f o r  the  sharp machined notch and 

decreases with increasing fat igue crack extension from t h i s  notch. For 

e i the r  the V notch or the  sawed slot, a fa t igue  crack extension of somewhat 

more than 30 mils appeared t o  remove t h e  crack f ron t  from the  influence 

of the s t a r t e r  configuration..  For chevron notches having the  specif ied 

root radius,  a fa t igue  crack extension of 0.050 inch (beyond t h e  in t e r sec t ion  

of the chevron with the  surface) would be more than adequate. 

tension-tension loading t o  develop fat igue cracks, appl icat ion of an 

When using 

i n i t i a l  precompression of about one-half the  maximum t e n s i l e  fa t igue  

s t r e s s  w i l l  be helpful  i n  reducing the number of load cycles necessary 

t o  start the  crack. Tests i n  t h e  authors' laboratory indicate  t h i s  

value f o r  specimens fa t igue  cracked KIc procedure w i l l  not influence the 

i n  the  proper manner. Some invest igators  have used water or  other corrosive 

media t o  assist i n  s t a r t i n g  the  crack. This procedure should be usefu l  

providing it can be shown t h a t  t h e  corrosive media does not influence 

t h e  f i n a l  r e s u l t s .  I n  Some materials an e l e c t r i c  discharge machined 

s l o t  has proven t o  be a very effect ive s t a r t e r  i n  comparison w i t h  a machined 

s l o t  of t he  same width. 

*A l a rge r  s c a t t e r  i s  observed f o r  the  da t a  from the  saw-slotted specimens 

because the  e f fec t ive  radius  of a sawed s l o t  va r i e s  depending on degree of 

roughness produced at  the  s l o t  t i p  which w i l l  be a function of the  sharpness 

of t h e  saw and the  pressure applied by the operator.  
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Fatigue Cracking 

The ef fec t ive  "sharpness" of a fat igue crack depends on the  maximum 

s t r e s s  intensi ty ,  K , imposed during fat igue cracking. The e f f ec t  

of increasing 

KIc 

and the  fatigue cracking conditions should be such t h a t  the  crack sharpness 

i s  not l e s s  than i s  l i k e l y  t o  be encountered i n  service.  

it i s  considered tha t  ( &=/GYs) 

the  "sharpness" of t he  fa t igue  crack. 

From general considerations it would be desirable  t o  use a high s t r e s s  

m a x  

beyond a ce r t a in  l e v e l  i s  t o  increase the  apparent 

of the mater ia l .  The magnitude of t h i s  e f fec t  depends on the  al loy,  

I n  t h i s  respect,  

i s  an important parameter influencing 

in t ens i ty  range, AK, f o r  fa t igue  cracking i n  order t o  achieve the  highest 

crack propagation r a t e  commensurate with adequate control of t he  process. 

On the  other hand, the  r a t i o  of (&ax/%s)2, where 

fa t igue  s t r e s s  in tens i ty ,  should be suf f ic ien t ly  low t h a t  fur ther  reduction 

i n  the  r a t i o  would not a f f ec t  t h e  measured K value. 

&ax i s  t h e  maximum 

I C  

Some indication of t h e  e f f ec t  of (?&ax/ays)2 on the  apparent KIc 

and on the  popin behavior i s  shown by recent t e s t s  made by the  authors 

i n  which the fat igue cracking load applied t o  bend specimens w a s  var ied.  

The bend specimens were provided w i t h  a chevron notch, and were fa t igue  

cracked i n  cant i lever  bending (a t  3600 rpm) w i t h  t he  notch located d i r e c t l y  

Over t h e  support. Tension-tension loading w a s  employed, t h e  r a t i o  of 

minimum t o  m a x i m u m  load being one-third fo r  all specimens. 

made on 242 k s i  y ie ld  s t rength maraging s t e e l ,  fa t igue  cracked before 

O r  a f t e r  aging, and on 7075-T651 aluminum a l loy .  I n  represent ing these 

data,  t he  apparent KIc values have been p lo t t ed  against  (%=/%s)~, 

Tests were 
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where 

from the m a x i m u m  applied tension load using the  

point bending (see the  sect ion of "K CALIBRATIONS OF SPECIMENS"). 

way of calculat ing K 

for  the  boundary conditions but  provides the  bes t  avai lable  estimate.  

KIc value f o r  7075-T651 i s  

e s sen t i a l ly  independent of (&/"ySl2 f o r  values of t h i s  r a t i o  up t o  

about 0.05, and then r i s e s  w i t h  increasing 

popin indicat ions were considerably l a rge r  at t h e  higher I(max l eve ls ,  

as indicated by the i n s e t s  i n  t h e  figure.  In  contrast ,  the  apparent KIc 

of the  maraging s t e e l  specimens when aged before cracking, Figure 31, w a s  

independent of (&/4cS)' only up t o  a value of t h i s  r a t i o  

0.01. 

a t  ( f z n a x / % ~ ) ~  = 0.050 resu l ted  i n  popin during fa t igue  cracking, and K I ~  

r e s u l t s  for these specimens a re  not reported.  

maraging s t e e l  when cracked before aging i s  a l so  shown i n  Figure 31 but  

i s  not su f f i c i en t  t o  ex tab l i sh  an upper l i m i t  on 

the  apparent KIc would be independent of t h i s  ratio.. However, t he  

da t a  do indicate  t h e  apparent 

begins t o  l e v e l  out at  (Q=/c+)' of  about 0.02. The influence of the 

f a t igue  cracking conditions on the  popin behavior i s  i l l u s t r a t e d  by the  

load displacement curves shown i n  Figures 32 and 33 f o r  specimens cracked 

before  and a f t e r  aging, respectively.  

aluminum al loy,  there  i s  a pronounced increase i n  the  amount of crack 

extension at popin with increase of (K&ax/ays)2  f o r  the  maraging s t e e l  

specimens when cracked i n  e i the r  condition. 

i s  the  estimated stress in t ens i ty  f ac to r  i n  f a t igue  calculated 

K ca l ib ra t ion  f o r  three-  

This 

i n  cant i lever  bending does not account properly 

According t o  Figure 30 t h e  apparent 

Kmax. The magnitudes of the 

of about 

It should be noted t h a t  attempts t o  fa t igue  crack such specimens 

The da ta  f o r  the  same 

below which 

KIc f o r  specimens cracked before aging 

A s  w a s  observed f o r  the 7075-T651 
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The fat igue crack extension Aa i n  t h e  above described t e s t  

specimens terminated about 0.050 inch beyond the  in te rsec t ion  of the  

chevron notch with the  specimen surface. The t o t a l  number of cycles 

necessary t o  produce these cracks i s  shown i n  Figure 34 as a function 

of t h e  estimated AK (equal t o  2/3 For the  maraging s t e e l  

cracked e i t h e r  before or after aging the t o t a l  number of cycles i s  

the same function of AK within the  limits of s ca t t e r .  A t  a given 

AK t he  aluminum alloy requires considerably fewer cycles than the  

s t e e l  t o  produce a crack of t he  same length.  

31 it i s  seen t h a t  at l e a s t  30,000 cycles (8 minutes at 3600 rpm) are  

required t.a prodwe rn adequately sharp crack i n  t h e  maraging s t e e l  

Comparing Figure 34 with 

aged before cracking. I n  contrast ,  adequately sharp cracks i n  t h e  

aluminum a l loy  can be produced i n  about 10,000 cycles (3  minutes).  

I n  s~mmary, t he  r e s u l t s  of these i l l u s t r a t i v e  experiments show 

t h a t  t h e  fat igue cracking conditions can have a pronounced e f f ec t  on 

KIc High values of (%ax/~ys)2 during fatigue can produce exag- 

gerated popin indicat ions and an elevated apparent plane s t r a i n  crack 

toughness. These e f f ec t s  may be thought of i n  terms of crack blunting, 

i n  t h a t  the same type of behavior i s  observed for  specimens provided 

w i t h  sharp machined notches (compare Figures 32 and 33 w i t h  29) a 

Additional data i s  c l ea r ly  needed t o  b e t t e r  define the  influences of 

the conditions of fa t igue  crack generation on the  plane s t r a i n  f rac-  

t u r e  behavior. Unti l  more de f in i t i ve  information i s  avai lable  , it 
would seem desirable  t o  fa t igue  crack specimens at t h e  lowest v d u e  of 

( K m m / ~ y s ) 2  COm~nSurate with Producing t h e  cracks i n  an acceptable 

time. The required number of cycles m y  be minimized by fa t igue  
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cracking a f t e r  heat treatment ra ther  than before. 

ponds t o  the highest AK for  a par t icular  value of (&/“ySl2 . I n  

the absence of additional da ta  it appears t h a t  a safe procedure would 

be t o  insure t h a t  at l e a s t  30,000 cycles are  consumed i n  fa t igue crack 

This sequence corres- 

~ 

, propagation. 

Face Grooving‘ 

Several years ago Newhouse and Wundt ( r e f .  43) described a Charpy 

impact specimen provided w i t h  a b r i t t l e  surface layer  produced by 

n i t r id ing .  

t i o n  of p l a s t i c  zones at the s ide  boundaries and thereby more closely 

approach plane s t r a i n  f rac ture  conditions at the  crack f ront .  Wei and 

Lauta ( r e f .  44) have made use of carbonitriding i n  f racture  toughness 

t e s t s .  More recently,  Freed and Krafft ( r e f .  45) have suggested t h a t  

face grooving of p l a t e  specimens for 

same purpose and be applicable t o  any material .  Empirical correction 

procedures have been proposed by these authors fo r  the application of 

planar K cal ibrat ions t o  specimens w i t h  face grooves. 

The purpose of this b r i t t l e  layer w a s  t o  suppress the  forma- 

KIc t e s t i r g  wculd accmpl ish  the 

I 

The e f f e c t s  of face grooving have not been adequately studied, 

~ but t h e  complexity i s  apparent. I f  t h e  grooves are suf f ic ien t ly  deep, 

crack i n i t i a t i o n  w i l l  occur at t h e  corners between the  crack front  and 

the face grooves where the  s t r e s s  in tens i ty  i s  highest. A s  t h e  r a t i o  

of groove depth t o  specimen thickness i s  descreased, the  var ia t ion  of 

K across the crack f ront  i s  decreased and the  crack front  w i l l  tend t o  

I advance uniformly. What i s  desired i s  some optimum groove depth and 

sharpness t h a t  will adequately suppress side boundary p l a s t i c  zone fo r -  

mation, and yet  produce a nearly uniform advance of the crack f ront .  
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It i s  d i f f i c u l t  t o  see how t h i s  optimum depth can be determined and it 

w i l l  probably be d i f fe ren t  f o r  d i f f e ren t  materials.  

I f  the specimen i s  suf f ic ien t ly  anisotropic i n  i t s  f r ac tu re  charac- 

t e r i s t i c s ,  t he  f r ac tu re  can or iginate  at t h e  face grooves and propagate 

across the thickness of specimen. This poss ib i l i t y ,  of course, increases 

with the  depth and sharpness of t he  face grooves. 

The e f f e c t  of face grooving on the  load-deflection record i s  i l l u s -  

t r a t e d  i n  Figures 35 and 36 f o r  maraging s t e e l  (not l i s t e d  i n  t a b l e  I)  

at  two yield strength levels ,  t e s t e d  using 1.5-inch wide, s ingle  edge 

crack specimens. 

ness, B/BN = 1.1 or 1.3) with a 0.005-inch root radius were employed. 

The gross thickness w a s  0.180 and 0.160 i n .  f o r  grooved and ungrooved 

specimens, respectively.  

Figure 35, a d i s t i n c t  popin i s  observed without face grooves and t h e  grooved 

specimen (B/B, = 1.1) ruptures completely a t  a load s l i g h t l y  lower than t h e  

ungrooved specimen. The K I ~  values f o r  these two specimens a r e  i n  

reasonable agreement according t o  t h e  method of calculat ion suggested i n  

reference 45. 

t h e  ungrooved specimen exhibi ts  no d i s t i n c t  popin and t h e  record would be 

discarded by applying the c r i t e r i a  presented i n  t h e  sect ion "CRITERIA FOR 

ANALYSIS OF LOAD DISPLACEMENT RECORDS." 

groove, the maximum load i s  progressively lowered and t h e  record chopped 

O f f .  

DISPLACEMENT RECORDS" are applied, all of t h e  records i n  Figure 36 exhibi t  

excessive deviation from l i n e a r i t y  and should be discarded. 

Shallow face grooves ( the  r a t i o  of gross t o  net thick-  

When aged a t  8500 F for  8 hours (uys = 280 k s i ) ,  

When aged at 7000 F f o r  8 hours (uys = 195 k s i ) ,  Figure 36, 

With increasing degth of face 

However, i f  t he  c r i t e r i a  of t he  sect ion "CRITERIA FOR ANALYSIS OF LOAD 

On the basis of t he  r e s u l t s  so far avai lable  it i s  not c l ea r  

whether face grooving can useful ly  increase the  KIc measurement 
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capacity of a p l a t e  specimen. However, it can produce abrupt rupture 

under conditions where a d i s t i n c t  popin followed by considerable s tab le  

crack extension would characterize an ungrowed specimen of the  same net 

thickness. 

t he  va l id i ty  of a ?SIC 

However, it i s  not known whether t h e  same c r i t e r i a  f o r  analysis of load 

displacements records can be applied t o  face grooved specimens as have 

been suggested for  ungrooved specimens. 

Instrumentation would s t i l l  be required i n  order t o  judge 

value derived from a face grooved specimen. 

Considering a l l  the complications discussed above, it appears t h a t  

i n  order t o  achieve usef'ul results, the depths, and possibly a lso  the 

root  radii, of t he  face grooves should be t a i lo red  t o  the  material  and 

specimen geometry. 

fo r  f'urther research ra ther  than a technique t o  be generally applied in 

plane s t r a i n  f rac ture  toughness tes t ing .  

I n  this respect, t h e  use of face grooves i s  a matter 

Pin Fr ic t ion  Effects i n  Bending 

Pin  f r i c t i o n  w i l l  tend t o  increase the measured KIc value over 

w h a t  would be obtained i n  the absence of f r i c t i o n .  Since there  i s  no 

sa t i s f ac to ry  way of correcting f o r  f r i c t i o n  e f f ec t s  i n  a given t e s t  s e t -  

up, t h e  bes t  procedure i s  t o  minimize the  e f f ec t  of pin f r i c t i o n  by 

proper design of the  loading fixture.  

The following i s  a b r i e f  description of some r e s u l t s  obtained i n  

the  authors '  laboratory from a ser ies  of t e s t s  made t o  determine methods 

of minimizing f r i c t i o n  e f f ec t s  i n  bending. 

without notches were employed i n  these t e s t s .  

of changes i n  the  loading arrangements on the  f r i c t i o n  e f fec t  was judged 

by comparing the  measured s t r e s s  (obtained from the  measured s t r a i n  and 

Strain-gaged bend specimens 

The r e l a t ive  influence 



60 

the  e l a s t i c  modulus) with the  value calculated from t h e  applied load using 

t h e  elementary f lexure formula. The effect  of f r i c t i o n  w i l l ,  of course, 

be revealed by a calculated s t r e s s  higher than the  measured s t r e s s .  

should be noted t h a t  t h i s  method cannot be used t o  accurately assess t h e  

e r ro r  i n  K 

ment because the manner of deformation and therefore  the  contribution 

of f r i c t i o n  t o  the  measured load w i l l  be d i f fe ren t  i n  a cracked specimen 

than i n  a smooth specimen. 

It 

which would be associated w i t h  a par t icu lar  loading asrange- 

Tests of t h e  type j u s t  described were made on 7075-T651 aluminum 

bend specimens" approximately 10 inches long, one inch wide and one- 

quarter i ~ c h  t h i c k .  The tension and compression surfaces were f i n i s h  

ground, and a one-eighth inch long f o i l  s t r a i n  gage was bonded t o  the  

tension surface at the  center of t h e  span. 

four-point bending with a major span of e i the r  e ight  inches or four 

inches, and a minor span of two inches. An X-Y p l o t t e r  provided a load- 

s t r a i n  record on loading ( t o  1500 lbs . )  and unloading f o r  each tes t ,  s e t -  

up investigated.  

i n  all cases, and the  calculated s t r e s ses  were compared w i t h  t he  measured 

s t r e s ses  on t h e  b a s i s  of t h e  maximum applied load. 

of f r i c t i o n  w a s  t o  produce hys te res i s  i n  the  load s t r a i n  diagram; hawever 

under some conditions the  loading and unloading records were l i n e a r  and 

coincident even though the  calculated s t r e s s  w a s  g rea te r  t han  the  measured s t r e s s .  

The specimens were loaded i n  

The loading portion of these records w a s  qu i te  l i n e a r  

Generally t h e  e f f e c t  

The m o s t  per t inent  r e s u l t s  obtained are summarized i n  Table IV, 

which gives t h e  e r ro r  i n  the  calculated e r r o r s  i n  s t r e s s e s  as compared 

* 
The tension modulus of 7075-T6 

agrees w i t h  t h a t  reported by t h e  authors i n  a previous paper reference 13. 

( E  = 10.3x106 p s i )  given i n  reference 46 
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with the  measured values f o r  f i v e  d i f fe ren t  t e s t  set-ups. 

a re  f r e e  t o  r o l l  on f la t  hardened s t e e l  p l a t e s  t h e  e r r o r  i n  the  calcula-  

t e d  s t r e s s  i s  within t h e  - + 0.5 percent r e p e a t i b i l i t y  of r ep l i ca t e  

measurements of t he  s t r a in .  

by t h e  t e s t s  i n  which the  minor span pins  are  f ixed  i n  a loading yoke, and 

the  major span pins  fixed i n  "V" blocks clamped t o  a base p la te .  

error encountered with this set-up w a s  3.5 percent. . 

If all pins  

A condition of high f r i c t i o n  i s  represented 

The 

Bend t e s t  f i x t u r e s  can be constructed t o  permit su f f i c i en t  movement 

of t he  pins  so t h a t  f r i c t i o n a l  e f f ec t s  a re  negl igible .  I n  a plane s t r a i n  

f r ac tu re  toughness t e s t  t h e  required movements of the  pins  w i l l  be s m a l l ,  

and it is  possible t o  accommodate these and y e t  prevent t h e  major span 

p ins  from being fo rc ib ly  expelled on complete f r ac tu re  of t h e  specimen. 

An example of modification of an ex is t ing  bend f i x t u r e  t o  permit s m a l l  

p in  movements i s  i l l u s t r a t e d  i n  Figure 37. 

t h a t  

s ide) ,  and supports the  minor span p ins  i n  a loading yoke. 

span i s  adjustable by means of threaded t i e  bars .  

approaching those c h w a c t e r i s t i c  of f r e e  pins were obtained by (a) 

covering the  v e r t i c a l  dowels w i t h  1/16-inch w a l l  thickness surg ica l  

tubing and ( b )  making the  holes i n  the loading yoke 1/32 inch greater  

i n  diameter than the  minor span pins.  For these conditions t h e  m a x i m u m  

e r r o r  i n  t h e  calculated s t r e s s  (Table IY) w a s  one percent. 

T h i s  f igure  shows a f i x t u r e  

posi t ions t h e  major span pins  against  v e r t i c a l  dowels (two on each 

The major 

Conditions closely 

The bend t e s t  f i x t u r e  modification described above i l l u s t r a t e s  the 

general ly  useful  pr inc ip le  t h a t  f r i c t i o n a l  e f f e c t s  i n  four-point bending 

can be  minimized by permitt ing s m a l l  outward movements of t h e  major span 

p ins  and corresponding inward movements of the minor span pins .  There 
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are,  of course, several  ways of incorporating these requirements i n  the  

i n i t i a l  f i x tu re  design. 

Lewis i s  shown i n  Figure 38. 

i n  s l o t s  by s m a l l  springs. These s l o t s  have a width somewhat greater  

than the  p in  diameter i n  order t o  permit t h e  necessary pin movements. 

The springs posi t ion the pins against  accurately located corners of t h e  

s l o t s  which e s t ab l i sh  the  major and minor spans. 

blocks are adjustable by means of pins f i t t i n g  i n t o  locat ing holes i n  

t h e  base p la te .  

A design suggested by M r .  M. Jones of NASA- 

The major and minor span pins are  re ta ined 

The major span support 

Fr ic t ion  e f f e c t s  i n  three-point bending are  d i f f i c u l t  t o  invest igate  

by t h e  types of t e s t s  described above. 

t h e  f a c t  t h a t  t he  f lexure formula applied t o  three-point bending leads 

t o  inaccuracies i n  the  calculated s t r e s ses .  The e r ro r s  involved increase 

with a decrease i n  the  span t o  width r a t i o  of t h e  three-point loaded 

beam and as shown by Frocht ( r e f .  4 7 )  may amount t o  as much as 1 2  per- 

cent f o r  a span t o  width r a t i o  of 4:l. While approximate solut ions t o  

the  s t resses  i n  three-point loaded beams have been developed ( r e f .  48), 

it i s  unlikely tha t  t e s t s  of the  type described above using three-point 

loading are necessary. Thus, fo r  given specimen dimensions, and e q u d  

bend angles, three-point loading should r e s u l t  i n  no l a rge r  f r i c t i o n  

e f fec ts  than observed for  four-point loading, and a f i x t u r e  su i tab le  

fo r  four-point loading should work equally w e l l  i n  three-point loading-  

These d i f f i c u l t i e s  a r i s e  from 

- 
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APPENDIX A 

BASIS FOR T€E ANALYSIS OF LOAD-DISPLACEMENT RECORDS 

The purpose here i s  t o  develop a ra t iona l  method for  analyzing load 

displacement records fo r  (1) excessive deviation from l i n e a r i t y  preceding 

popin and, ( 2 )  sufficiency of the popin indication. 

displacement record i s  shown i n  Figure A-1  which a l so  shows the  various 

quant i t ies  involved i n  the analysis.  

maximum P followed by an increasing displacement Av with decreas- 

ing load. The displacement vi i s  tha t  which would have corresponded 

t o  Pp i f  the  record had remained l inear  up t o  this point.  The addi- 

t i ona l  displacement Avi 

cannot be analyzed precisely;  instead t h i s  deviation from l i n e a r i t y  w i l l  

be regarded as though it were en t i re ly  due t o  an increment of crack 

sx t  ens ion 

A t yp ica l  load- 

Popin i s  indicated by t h e  load 

P P 

is the  combined r e s u l t  of several  e f f e c t s  and 

4 -  
I n  order t o  es tab l i sh  a permissible l i m i t  f o r  n&i/ao it is  assumed 

t h a t  hi should not exceed the formally cmputed plane s t r a i n  p l a s t i c  

zone correction term. That is, 

Also, for a va l id  t e s ,  it w a s  assumed ,ha 

2 
a. - > 2.5 re) . 

Hence, f o r  a sa t i s fac tory  t e s t  

Aa, 1 - < -  - 50 

-. J .  

T h i s  condition may be expressed i n  terms of the  displacement by 

use of experimentally dekermined cal ibrat ion curves which r e l a t e  the  
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displacement per un i t  load t o  the crack length f o r  each par t icu lar  

specimen ty-pe. The ca l ibra t ion  r e l a t i o n  takes the form: 

where F (a/W) i s  a function of a/W for single edge cracked specimens 

which depends on the  specimen cha rac t e r i s t i c s .  Consequently, at con- * 

st ant load : 

or considering t h a t  Aa < < 

1 
F 
- 

F(: -k $$) - F(;) 

and therefore: 
I- 

( A 2 )  a v i  dF % - -  
vi -,= P d[%)] a' 

Combining Equation (1) with Equation ( 2 )  gives t h e  allowable l i m i t  

of deviation from l i n e a r i t y  i n  terms of displacements. 

where H i s  a ca l ibra t ion  factor  derived from experimentally determined 

cal ibrat ion curves. 

several  specimen types. 

P lo ts  of t h i s  f ac to r  a r e  given i n  Figure A-2 f o r  

The l imitat ion on deviation from l i n e a r i t y  m a y  be expressed i n  terms 

of t he  reciprocal slope of a secant l i n e  connecting t h e  maximum load 

* I n  the case: of the center and double edge cracked specimens Vm/p i s  

expressed as a function of 2a/W. 
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point Pp at  popin t o  the origin.  Thus, 

nvi + vi 
< 2 [.+&I 

pP - pP 

For the  recommended range of values of 

value of 

adW between 0.45 and 0.55 the  

H/50  might be standardized at 0.06 fo r  single edge crack tension 

and bend specimens and a t  0.02 for  the center and double edge crack 

specimens. This leads t o  the requirement that a deviation from l i n e a r i t y  

should represent a reciprocal slope change on a plot  of load vs displace- 

ment, of not more than 6 percent for t h e  single edge crack specimens and 

not more than 2 percent f o r  the  symmetricdly cracked specimens. 

The question of how l m g e  a popin indication should be required can 

only be answered i n  an empirical way at  this time. 

of the  crack f ront  at popin should include an mount of mater ia l  at 

Ideal ly ,  the  advance 

l e a s t  suff ic ient  t o  be representative of the bulk f rac ture  properties 

of the  specimen ( i .e . ,  substant ia l ly  greater  than the  s ize  and spacing 

of minor phase pa r t i c l e s  i n  an alloy and extending beyond the small zone 

of a l t e r ed  material  produced during fat igue cracking). 

w i l l ,  of course, be d i f fe ren t  for  different  materials and probably w i l l  

This distance 

a l so  vasy with the  fat igue cracking and t e s t ing  conditions. A good deal 

of addi t ional  experience i s  necessary before f i r m  guidelines can be 

establ ished f o r  the  required extent of popin. Analysis of the  trial 

KIc 

displacement change at popin, 

s i b l e  deviation from l i n e a s i t y  a t  the popin load i s  a reasonably conser- 

tests made during the  NASA-NRL Cooperative Program indicate  t ha t  a 

Avp a t  l e a s t  equal t o  t h e  m a x i m u m  permis- 

va t ive  c r i t e r ion  fo r  a sa t i s fac tory  popin indication. Application of 

t h i s  c r i t e r i o n  will probably ensure tha t  the bulk f rac ture  properties 
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of t h e  specimen are being measured f o r  most engineering al loys t e s t ed  

using specimens meeting the  s i z e  requirements outlined i n  the  sect ion 

SPECIMEN SIZE FEQUIREMENTS. 

Examples of the  analyses of ac tua l  load displacement records a r e  

i l l u s t r a t e d  i n  Figure A-3 which shows r e su l t s  obtained from bend tests 

on specimens of  four  thicknesses of SAE 4340H s t e e l  (6000 F temper, uys = 230 k s i )  

machined f r o m  a s ingle  one inch plate .  I n  order t o  permit convenient 

representation of a l l  records on one f igure,  an ordinate sca le  of  load 

divided by thickness P/B has been used. 

Referring t o  Figure A-2,  a value of H 3 1 .75  i s  obtained f o r  the  

nominal ao/W of 0 . 3 3  used f o r  these specimem. As discussed abcve, t h i s  

leads t o  a requirement t ha t  t he  deviation from l i n e a r i t y  preceding popin 

s h a l l  correspond t o  an increase i n  t h e  reciprocal  slope of t he  secant of 

not more than 3.5 percent. The secant l i n e s  i n  Figure A-3 a r e  drawn i n  

conformance with t h i s  requirement and the  selected popin loads a re  indicated 

f o r  each record. O f  t h e  records i l l u s t r a t e d ,  those for specimens of 

1/8 inch o r  thicker  meet t h e  requirements on deviation from l i n e a r i t y  and 

magnitude of popin indication. 

meets nei ther  of these requirements, and t h e  popin load was selected at. 

t he  f i rs t  def in i te  step.  

The record f o r  t h e  1/16 inch th i ck  specimen 

The average K I ~  value f o r  dupl icate  tests at  each thickness i s  

a l so  shown on Figure A-3. 

specimens give an average K I ~  = 52.5  ksi-in.1/2 while t h e  th inner  specimens 

give higher values. This t rend of K I ~  w i t h  thickness i s  i n  accordance 

with the  observations made i n  the sect ion on SPECIMEN SIZE IIEQUIREMEN'I'S 

which would indicate  a thickness of a t  l e a s t  0.14 inch would be necessary 

f o r  a va l id  K I ~  t e s t  on t h i s  alloy. 

It w i l l  be noted t h a t  t h e  1/4 and 1 / 2  inch th i ck  
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APPENDIX B 

SPEClMEN TYPES 

The suggested proportions of the  various plane s t r a i n  crack toughness 

t e s t  specimens discussed i n  the  t e x t  are shown i n  Figs. B-1 through B-3. 

Only one bend specimen i s  i l l u s t r a t e d ,  Fig. B-2, which has a span t o  width 

r a t i o  (S/W) of four and i s  subjected t o  three point loading. 

inadvisable t o  use bend specimens w i t h  subs tan t ia l ly  lower values of 

since t h e  K 

accuracy and because the  e r rors  introduced by f r i c t i o n  increase w i t h  

decreasing S/W. However, there  is  no reason why higher values of S/W 

can not be used. 

no disadvantage t o  four point bending. 

f o r  p l a t e  specimens between W/2 and W/4 does not represent a basic  

requirement for a va l id  KIc 

a r r iv ing  at a graded se r i e s  of specimen s izes .  

It i s  considered 

S/W 

cal ibrat ions for  such specimens would l i ke ly  have dubious 

Except f o r  the increased load requirements, there  i s  

The preferred range of thickness 

t e s t ,  but i s  scggested for convenience i n  
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Material 

TABLE 11. - VARIABILITY OF VALID* KIc RESULTS 

Marging 
steel (300) 

Marging 
steel (250) 

Marging 
steel (300) 

Aluminum 
7075 (1/2 incl 
th ick)  

Heat 
treatment 

900° F/3 h 

900° F/3 h 

850° F/3 h 

T651 

Yield 
strength: 

k s i  

285 

259 

242 

79 

Number 
of tests: 

n 

38 

23 

44 

24 

K,- Tests 
IC: 

Mean 

ksi-in.l/’ 

- 
KTc’ x, 

51.75 

68.4 

84.5 

26.8 

Standard 
leviation, 

ksi-in.1/2 
s, 

2.47 

3.51 

4.67 

1.32 

S/Z 

0.0478 

0.0515 

0.0555 

0.0495 

*Valid according t o  the  tentative c r i t e r i a  suggested i n  t h i s  report .  



76 

TABLE 111. - RECOMMENDED MINIMUM SPECIMEN DIMENSIONS AND RATIOS OF 

REQUIRED LOAD TO YIELD STRENGTH FOR (KIc/%s)2 = 1 

[For other  values of (KIc/%S)2, t h e  dimensions should be i n  
proportion t o  t h i s  fac tor ,  and t h e  loads i n  proportion t o  
i t s  square.] 

Specimen type 

Crack-notched round bar 

Center-crack p l a t e  

Doub 1 e -edge -crack - p l  at e 

Single -edge -crack p l a t  e, 
tension 

Single -edge -crack p l a t  e, 
4-point bent 
(8:l :  :Span:Depth) 
(2:l::Minor Span:Depth 

Single-edge crack plate ,  
3-point bend 
(4:l::Span:Depth) 

Crackline loaded plate 

'hickness, 
i n .  

--- 

2.5 

2.5 

2.5 

2.5 

2.5 

2.5 

Crack 
length, 

i n .  

2.5 
{ D/2 -d/2 ) 

5 .O 
( 2 4  

2.5 

2.5 

2.5 

2.5 

--------- 

Tidth or 
liameter, 

i n .  

10 
( D )  

10 

10 

5 

5 

5 

--- 

specimen 
length, 

i n .  

40 

40 

a 
20 

41 

21 

-- 

~ 

Load 
yield 

it rengt  h, 
sq i n .  

14.7 

7.5 

7.9 

1.6 

0.33 

0.50 

----- 
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TABU I V t  - RESULTS OF TESTS TO DETERMINE 

F R I C T I O N  EFFECTS ON 4-POINT BEXDING 

I Set-upa 
Span t o  width 

r a t i o  

8:l  

4:l 

8:l  

8: l  

4: 1 

Free pins 

Free pins 

"V" blocksC 

Fixtureb 

Fixture 

Percent e r ro r  

0.5 

0.5 

3.5 

1 .o 

0.5 

%nor span: 
center 6. 

Major span: 
or 4 in .  centers  

9/16 i n .  dia. pins on 2 i n .  

3/4 i n .  dia .  pins on 3 in .  

bsee Fig. 37 for deta i l s  ~f f i x tu re .  
'Major span pins  i n  "V" blocks f ixed t o  a 

. 

base p l a t e  and minor span pins fixed i n  a 
loading yoke. 
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